\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A semi-Lagrangian scheme for a degenerate second order mean field game system

Abstract Related Papers Cited by
  • In this paper we study a fully discrete Semi-Lagrangian approximation of a second order Mean Field Game system, which can be degenerate. We prove that the resulting scheme is well posed and, if the state dimension is equals to one, we prove a convergence result. Some numerical simulations are provided, evidencing the convergence of the approximation and also the difference between the numerical results for the degenerate and non-degenerate cases.
    Mathematics Subject Classification: Primary: 65M12, 91A13; Secondary: 65M25, 91A23, 49J15, 35F21, 35Q84.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. Achdou, F. Camilli and L. Corrias, On numerical approximations of the Hamilton-Jacobi-transport system arising in high frequency, Discrete and Continuous Dynamical Systems- Series B, 19 (2014), 629-650.doi: 10.3934/dcdsb.2014.19.629.

    [2]

    Y. Achdou, F. Camilli and I. C. Dolcetta, Mean field games: Convergence of a finite difference method, SIAM J. Numer. Anal., 51 (2013), 2585-2612.doi: 10.1137/120882421.

    [3]

    Y. Achdou and I. C. Dolcetta, Mean field games: Numerical methods, SIAM Journal of Numerical Analysis, 48 (2010), 1136-1162.doi: 10.1137/090758477.

    [4]

    L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition. Lecture notes in Mathematics ETH Zürich. Birkhäuser Verlag, Bassel, 2008.

    [5]

    G. Barles and P. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), 271-283.

    [6]

    B. Bouchard and N. Touzi, Weak dynamic programming principle for viscosity solutions, SIAM Journal on Control and Optimization, 49 (2011), 948-962.doi: 10.1137/090752328.

    [7]

    L. Breiman, Probability, Addison-Wesley Publishing Company, Reading, MA, 1968.

    [8]

    F. Camilli and M. Falcone, An approximation scheme for the optimal control of diffusion processes, RAIRO Modél. Math. Anal. Numér., 29 (1995), 97-122.

    [9]

    F. Camilli and F. J. Silva, A semi-discrete in time approximation for a first order-finite mean field game problem, Network and Heterogeneous Media, 7 (2012), 263-277.doi: 10.3934/nhm.2012.7.263.

    [10]

    P. Cardaliaguet, Notes on Mean Field Games: From P.-L. Lions' lectures at Collège de France, Lecture Notes given at Tor Vergata.

    [11]

    E. Carlini and F. J. Silva, Semi-lagrangian schemes for mean field game models, in Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on, (2013), 3115-3120.doi: 10.1109/CDC.2013.6760358.

    [12]

    E. Carlini and F. J. Silva, A fully discrete semi-lagrangian scheme for a first order mean field game problem, SIAM Journal on Numerical Analysis, 52 (2014), 45-67.doi: 10.1137/120902987.

    [13]

    P. G. Ciarlet and J.-L. Lions (eds.), Handbook of Numerical Analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991, Finite element methods. Part 1.

    [14]

    M. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. American Mathematical Society (New Series), 27 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5.

    [15]

    F. Da Lio and O. Ley, Uniqueness results for second-order bellman-isaacs equations under quadratic growth assumptions and applications, SIAM Journal on Control and Optimization, 45 (2006), 74-106.doi: 10.1137/S0363012904440897.

    [16]

    K. Debrabant and E. R. Jakobsen, Semi-Lagrangian schemes for linear and fully non-linear diffusion equations, Math. Comp., 82 (2013), 1433-1462.doi: 10.1090/S0025-5718-2012-02632-9.

    [17]

    M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, MOS-SIAM Series on Optimization, 2013.doi: 10.1137/1.9781611973051.

    [18]

    A. Figalli, Existence and uniqueness of martingale solutions for sdes with rough or degenerate coefficients, J. Funct. Anal., 254 (2008), 109-153.doi: 10.1016/j.jfa.2007.09.020.

    [19]

    W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer, New York, 1993.

    [20]

    D. Gomes and J. Saúde, Mean field models, a brief survey, Dynamic Games and Applications, 4 (2014), 110-154.doi: 10.1007/s13235-013-0099-2.

    [21]

    O. Guéant, Mean field games equations with quadratic hamiltonian: A specific approach, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1250022, 37pp.doi: 10.1142/S0218202512500224.

    [22]

    O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, vol. 2003 of Lecture Notes in Math., Springer, Berlin, (2011), 205-266.doi: 10.1007/978-3-642-14660-2_3.

    [23]

    M. Huang, P. Caines and R. Malhamé, Individual and mass behavior in large population stochastic wireless power control problems: Centralized and Nash equillibrium solutions, Proc. 42nd IEEE-CDC.

    [24]

    M. Huang, P. Caines and R. Malhamé, Large populations stochastic dynamics games: Closed-loop McKean-Vlasov systems and the Nash certainly equivalence principle, Comm. Inf. Syst., 6 (2006), 221-251.doi: 10.4310/CIS.2006.v6.n3.a5.

    [25]

    H. Kushner and P. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, vol. 24 of Applications of mathematics, Springer, New York, 2001, Second edition.doi: 10.1007/978-1-4613-0007-6.

    [26]

    A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567-588.doi: 10.1142/S0218202510004349.

    [27]

    J.-M. Lasry and P.-L. Lions, Jeux à champ moyen I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.doi: 10.1016/j.crma.2006.09.019.

    [28]

    J.-M. Lasry and P.-L. Lions, Jeux à champ moyen II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.doi: 10.1016/j.crma.2006.09.018.

    [29]

    J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8.

    [30]

    A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics (Second Ed.), Springer, Berlin, 2007.

    [31]

    C. Villani, Topics in Optimal Transportation, Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2003.

    [32]

    J. Yong and X. Zhou, Stochastic Controls, Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.doi: 10.1007/978-1-4612-1466-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return