• Previous Article
    Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains
  • DCDS Home
  • This Issue
  • Next Article
    On the $\Gamma$-limit for a non-uniformly bounded sequence of two-phase metric functionals
January  2015, 35(1): 427-440. doi: 10.3934/dcds.2015.35.427

Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities

1. 

School of Mathematical Sciences, Capital Normal University, Beijing 100037, China

2. 

Department of Mathematics, Beijing University of Chemical Technology, Beijing 100029, China

Received  November 2013 Revised  March 2014 Published  August 2014

In this paper, we obtain the existence of infinitely many solutions for the following Schrödinger-Poisson system \begin{equation*} \begin{cases} -\Delta u+a(x)u+ \phi u=k(x)|u|^{q-2}u- h(x)|u|^{p-2}u,\quad &x\in \mathbb{R}^3,\\ -\Delta \phi=u^2,\ \lim_{|x|\to +\infty}\phi(x)=0, &x\in \mathbb{R}^3, \end{cases} \end{equation*} where $1 < q < 2 < p < +\infty$, $a(x)$, $k(x)$ and $h(x)$ are measurable functions satisfying suitable assumptions.
Citation: Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427
References:
[1]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem,, Commun. Contemp. Math., 10 (2008), 391.  doi: 10.1142/S021919970800282X.  Google Scholar

[2]

P. d'Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrödinger-Poisson system,, Nonlinear Anal. TMA, 74 (2011), 5705.  doi: 10.1016/j.na.2011.05.057.  Google Scholar

[3]

A. Azzollini, P. d'Avenia and A. Pomponio, On the Schroinger-Maxwell equations under the effect of a general nonlinear term,, Ann. Inst. H. Poincare Anal. NonLineaire, 27 (2010), 779.  doi: 10.1016/j.anihpc.2009.11.012.  Google Scholar

[4]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[5]

T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schröinger equations with steep potential well,, Commun. Contemp. Math., 3 (2001), 549.  doi: 10.1142/S0219199701000494.  Google Scholar

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations,, Topol. Methods Nonlinear Anal., 11 (1998), 283.   Google Scholar

[7]

K. Benmlih, Stationary solutions for a Schröinger-Poisson system in $\mathbbR^3$,, in Proceedings of the 2002 Fez Conference on Partial Differential Equations, (2002), 65.   Google Scholar

[8]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[9]

S. J. Chen and C. L. Tang, High energy solutions for the superlinear Schrödinger Maxwell equations,, Nonlinear Anal. TMA, 71 (2009), 4927.  doi: 10.1016/j.na.2009.03.050.  Google Scholar

[10]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493.  doi: 10.1016/S0294-1449(98)80032-2.  Google Scholar

[11]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893.  doi: 10.1017/S030821050000353X.  Google Scholar

[12]

D. G. de Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems,, J. Funct. Anal., 199 (2003), 452.  doi: 10.1016/S0022-1236(02)00060-5.  Google Scholar

[13]

X. M. He and W. M. Zou, Existence and concentration of ground states for Schröinger-Poisson equations with critical growth,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.3683156.  Google Scholar

[14]

H. Kikuchi, On the existence of solution for elliptic system related to the Maxwell-Schrödinger equations,, Nonlinear Anal. TMA, 67 (2007), 1445.  doi: 10.1016/j.na.2006.07.029.  Google Scholar

[15]

A. Kristály and D. Repovš, On the Schröinger-Maxwell system involving sublinear terms,, Nonlinear Anal. Real World Applications, 13 (2012), 213.  doi: 10.1016/j.nonrwa.2011.07.027.  Google Scholar

[16]

G. B. Li, S. J. Peng and S. S. Yan., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system,, Commun. Contemp. Math., 12 (2010), 1069.  doi: 10.1142/S0219199710004068.  Google Scholar

[17]

P. L. Lions, Solutios of Hartree-Fock equations for Coulomb systems,, Commun. Math. Phys., 109 (1984), 33.  doi: 10.1007/BF01205672.  Google Scholar

[18]

S. B. Liu and S. J. Li, An elliptic equation with concave and convex nonlinearities,, Nonlinear Anal. TMA, 53 (2003), 723.  doi: 10.1016/S0362-546X(03)00020-8.  Google Scholar

[19]

D. Ruiz, The Schrödinger-Poisson equation under the effect of nonlinear local term,, J. Funct. Anal., 237 (2006), 655.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[20]

J. T. Sun, Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 390 (2012), 514.  doi: 10.1016/j.jmaa.2012.01.057.  Google Scholar

[21]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[22]

E. Tonkes, A semilinear elliptic equation with concave and convex nonlinearities,, Topol. Methods Nonlinear Anal., 13 (1999), 251.   Google Scholar

[23]

Z. P. Wang and H. S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$,, Discrete Contin. Dyn. Syst., 18 (2007), 809.  doi: 10.3934/dcds.2007.18.809.  Google Scholar

[24]

Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin,, Nonlinear Differ. Equ. Appl., 8 (2001), 15.  doi: 10.1007/PL00001436.  Google Scholar

[25]

M. B. Yang, Z. F. Shen and Y. H. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system,, Nonlinear Anal., 71 (2009), 730.  doi: 10.1016/j.na.2008.10.105.  Google Scholar

[26]

L. G. Zhao and F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations,, J. Math. Anal. Appl., 346 (2008), 155.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem,, Commun. Contemp. Math., 10 (2008), 391.  doi: 10.1142/S021919970800282X.  Google Scholar

[2]

P. d'Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrödinger-Poisson system,, Nonlinear Anal. TMA, 74 (2011), 5705.  doi: 10.1016/j.na.2011.05.057.  Google Scholar

[3]

A. Azzollini, P. d'Avenia and A. Pomponio, On the Schroinger-Maxwell equations under the effect of a general nonlinear term,, Ann. Inst. H. Poincare Anal. NonLineaire, 27 (2010), 779.  doi: 10.1016/j.anihpc.2009.11.012.  Google Scholar

[4]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 345 (2008), 90.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[5]

T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schröinger equations with steep potential well,, Commun. Contemp. Math., 3 (2001), 549.  doi: 10.1142/S0219199701000494.  Google Scholar

[6]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations,, Topol. Methods Nonlinear Anal., 11 (1998), 283.   Google Scholar

[7]

K. Benmlih, Stationary solutions for a Schröinger-Poisson system in $\mathbbR^3$,, in Proceedings of the 2002 Fez Conference on Partial Differential Equations, (2002), 65.   Google Scholar

[8]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[9]

S. J. Chen and C. L. Tang, High energy solutions for the superlinear Schrödinger Maxwell equations,, Nonlinear Anal. TMA, 71 (2009), 4927.  doi: 10.1016/j.na.2009.03.050.  Google Scholar

[10]

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 493.  doi: 10.1016/S0294-1449(98)80032-2.  Google Scholar

[11]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893.  doi: 10.1017/S030821050000353X.  Google Scholar

[12]

D. G. de Figueiredo, J. P. Gossez and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems,, J. Funct. Anal., 199 (2003), 452.  doi: 10.1016/S0022-1236(02)00060-5.  Google Scholar

[13]

X. M. He and W. M. Zou, Existence and concentration of ground states for Schröinger-Poisson equations with critical growth,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.3683156.  Google Scholar

[14]

H. Kikuchi, On the existence of solution for elliptic system related to the Maxwell-Schrödinger equations,, Nonlinear Anal. TMA, 67 (2007), 1445.  doi: 10.1016/j.na.2006.07.029.  Google Scholar

[15]

A. Kristály and D. Repovš, On the Schröinger-Maxwell system involving sublinear terms,, Nonlinear Anal. Real World Applications, 13 (2012), 213.  doi: 10.1016/j.nonrwa.2011.07.027.  Google Scholar

[16]

G. B. Li, S. J. Peng and S. S. Yan., Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system,, Commun. Contemp. Math., 12 (2010), 1069.  doi: 10.1142/S0219199710004068.  Google Scholar

[17]

P. L. Lions, Solutios of Hartree-Fock equations for Coulomb systems,, Commun. Math. Phys., 109 (1984), 33.  doi: 10.1007/BF01205672.  Google Scholar

[18]

S. B. Liu and S. J. Li, An elliptic equation with concave and convex nonlinearities,, Nonlinear Anal. TMA, 53 (2003), 723.  doi: 10.1016/S0362-546X(03)00020-8.  Google Scholar

[19]

D. Ruiz, The Schrödinger-Poisson equation under the effect of nonlinear local term,, J. Funct. Anal., 237 (2006), 655.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[20]

J. T. Sun, Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations,, J. Math. Anal. Appl., 390 (2012), 514.  doi: 10.1016/j.jmaa.2012.01.057.  Google Scholar

[21]

W. A. Strauss, Existence of solitary waves in higher dimensions,, Comm. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[22]

E. Tonkes, A semilinear elliptic equation with concave and convex nonlinearities,, Topol. Methods Nonlinear Anal., 13 (1999), 251.   Google Scholar

[23]

Z. P. Wang and H. S. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$,, Discrete Contin. Dyn. Syst., 18 (2007), 809.  doi: 10.3934/dcds.2007.18.809.  Google Scholar

[24]

Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin,, Nonlinear Differ. Equ. Appl., 8 (2001), 15.  doi: 10.1007/PL00001436.  Google Scholar

[25]

M. B. Yang, Z. F. Shen and Y. H. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system,, Nonlinear Anal., 71 (2009), 730.  doi: 10.1016/j.na.2008.10.105.  Google Scholar

[26]

L. G. Zhao and F. K. Zhao, On the existence of solutions for the Schrödinger-Poisson equations,, J. Math. Anal. Appl., 346 (2008), 155.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

[1]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[2]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[3]

Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241

[4]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[5]

João Marcos do Ó, Uberlandio Severo. Quasilinear Schrödinger equations involving concave and convex nonlinearities. Communications on Pure & Applied Analysis, 2009, 8 (2) : 621-644. doi: 10.3934/cpaa.2009.8.621

[6]

Weiwei Ao, Liping Wang, Wei Yao. Infinitely many solutions for nonlinear Schrödinger system with non-symmetric potentials. Communications on Pure & Applied Analysis, 2016, 15 (3) : 965-989. doi: 10.3934/cpaa.2016.15.965

[7]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[8]

Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011

[9]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[10]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[11]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

[12]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[13]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[14]

Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265

[15]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[16]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[17]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[18]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[19]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[20]

Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]