September  2015, 35(9): 4323-4343. doi: 10.3934/dcds.2015.35.4323

Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval

1. 

Russian Academy of Sciences, Central Economics and Mathematics Institute and Lomonosov Moscow State University, Russia 117418, Moscow, Nakhimovskii prospekt, 47, Russian Federation

2. 

Systems Research Institute, Polish Academy of Sciences, Warszawa, Moscow State University of Civil Engineering, Russian Federation

Received  April 2014 Revised  October 2014 Published  April 2015

We study an optimal control problem with Volterra-type integral equation, considered on a nonfixed time interval, subject to endpoint constraints of equality and inequality type. We obtain first-order necessary optimality conditions for an extended weak minimum, the notion of which is a natural generalization of the notion of weak minimum with account of variations of the time. The conditions obtained generalize the Euler--Lagrange equation and transversality conditions for the Lagrange problem in the classical calculus of variations with ordinary differential equations.
Citation: Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323
References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control,, (Translated from Russian). Consultants Bureau. New York etc., (1987).  doi: 10.1007/978-1-4615-7551-1.  Google Scholar

[2]

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints,, JOTA, 13 (1974), 32.  doi: 10.1007/BF00935608.  Google Scholar

[3]

J. F. Bonnans and C. De La Vega, Optimal control of state constrained integral equations,, Set-Valued Var. Analysis, 18 (2010), 307.  doi: 10.1007/s11228-010-0154-8.  Google Scholar

[4]

J. F. Bonnans, C. De La Vega and X. Dupuis, First and second order optimality conditions for optimal control problems of state constrained integral equations,, JOTA, 159 (2013), 1.  doi: 10.1007/s10957-013-0299-3.  Google Scholar

[5]

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation,, JOTA, 54 (1987), 43.  doi: 10.1007/BF00940404.  Google Scholar

[6]

A. V. Dmitruk and A. M. Kaganovich, Quadratic order conditions for a weak minimum in optimal control problems with intermediate and mixed constraints,, Discrete and Continuous Dynamical Systems, 29 (2011), 523.  doi: 10.3934/dcds.2011.29.523.  Google Scholar

[7]

A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema,, Russian Math. Surveys, 35 (1980), 11.   Google Scholar

[8]

A. V. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints,, SIAM J. on Control and Optimization, 52 (2014), 3437.  doi: 10.1137/130921465.  Google Scholar

[9]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems,, (Translated from Russian), (1972).   Google Scholar

[10]

R. F. Hartl and S. P. Sethi, Optimal control on a class of systems with continuous lags: Dynamic programming approach and economic interpretations,, JOTA, 43 (1984), 73.  doi: 10.1007/BF00934747.  Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems,, (Translated from Russian), (1979).   Google Scholar

[12]

M. I. Kamien and E. Muller, Optimal control with integral state equations,, The Review of Economic Studies, 43 (1976), 469.  doi: 10.2307/2297225.  Google Scholar

[13]

C. De la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation,, JOTA, 130 (2006), 79.  doi: 10.1007/s10957-006-9087-7.  Google Scholar

[14]

V. R. Vinokurov, Optimal control of processes described by integral equations,, SIAM J. on Control, 7 (1969), 324.   Google Scholar

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control,, (Translated from Russian). Consultants Bureau. New York etc., (1987).  doi: 10.1007/978-1-4615-7551-1.  Google Scholar

[2]

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints,, JOTA, 13 (1974), 32.  doi: 10.1007/BF00935608.  Google Scholar

[3]

J. F. Bonnans and C. De La Vega, Optimal control of state constrained integral equations,, Set-Valued Var. Analysis, 18 (2010), 307.  doi: 10.1007/s11228-010-0154-8.  Google Scholar

[4]

J. F. Bonnans, C. De La Vega and X. Dupuis, First and second order optimality conditions for optimal control problems of state constrained integral equations,, JOTA, 159 (2013), 1.  doi: 10.1007/s10957-013-0299-3.  Google Scholar

[5]

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation,, JOTA, 54 (1987), 43.  doi: 10.1007/BF00940404.  Google Scholar

[6]

A. V. Dmitruk and A. M. Kaganovich, Quadratic order conditions for a weak minimum in optimal control problems with intermediate and mixed constraints,, Discrete and Continuous Dynamical Systems, 29 (2011), 523.  doi: 10.3934/dcds.2011.29.523.  Google Scholar

[7]

A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema,, Russian Math. Surveys, 35 (1980), 11.   Google Scholar

[8]

A. V. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints,, SIAM J. on Control and Optimization, 52 (2014), 3437.  doi: 10.1137/130921465.  Google Scholar

[9]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems,, (Translated from Russian), (1972).   Google Scholar

[10]

R. F. Hartl and S. P. Sethi, Optimal control on a class of systems with continuous lags: Dynamic programming approach and economic interpretations,, JOTA, 43 (1984), 73.  doi: 10.1007/BF00934747.  Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems,, (Translated from Russian), (1979).   Google Scholar

[12]

M. I. Kamien and E. Muller, Optimal control with integral state equations,, The Review of Economic Studies, 43 (1976), 469.  doi: 10.2307/2297225.  Google Scholar

[13]

C. De la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation,, JOTA, 130 (2006), 79.  doi: 10.1007/s10957-006-9087-7.  Google Scholar

[14]

V. R. Vinokurov, Optimal control of processes described by integral equations,, SIAM J. on Control, 7 (1969), 324.   Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[18]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]