-
Previous Article
Robustness of performance and stability for multistep and updated multistep MPC schemes
- DCDS Home
- This Issue
-
Next Article
Integral representations for bracket-generating multi-flows
Optimal control of dynamical systems with polynomial impulses
1. | Institute for System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation, Russian Federation |
  Under natural convexity assumptions, we give an explicit representation of generalized solutions to the control system by a measure differential equation. The main results concern an optimal impulsive control problem for the relaxed system: We establish the existence of a minimizer, and give necessary optimality conditions in the form of a Maximum Principle.
References:
[1] |
A. Arutyunov, D. Karamzin and F. Pereira, On constrained impulsive control problems,, J. Math. Sci., 165 (2010), 654.
doi: 10.1007/s10958-010-9834-z. |
[2] |
A. Arutyunov, D. Karamzin and F. Pereira, A nondegenerate Maximum Principle for the impulse control problem with state constraints,, SIAM J. Control Optim., 43 (2005), 1812.
doi: 10.1137/S0363012903430068. |
[3] |
J.-P. Aubin and A. Cellina, Differential Inclusions,, Springer-Verlag, (1984).
doi: 10.1007/978-3-642-69512-4. |
[4] |
A. Bressan, Impulsive control of Lagrangian systems and locomotion in fluids,, Discr. Cont. Dynam. Syst., 20 (2008), 1.
doi: 10.3934/dcds.2008.20.1. |
[5] |
A. Bressan and M. Motta, A class of mechanical systems with some coordinates as controls. A reduction of certain optimization problems for them. Solution methods,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem., 2 (1993).
|
[6] |
A. Bressan and F. Rampazzo, Moving constraints as stabilizing controls in classical mechanics,, Arch. Ration. Mech. Anal., 196 (2010), 97.
doi: 10.1007/s00205-009-0237-6. |
[7] |
A. Bressan and F. Rampazzo, On systems with quadratic impulses and their application to Lagrangean mechanics,, SIAM J. Control Optim., 31 (1993), 1205.
doi: 10.1137/0331057. |
[8] |
A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions,, J. Optim. Theory Appl., 81 (1994), 435.
doi: 10.1007/BF02193094. |
[9] |
V. Dykhta, Impulse-trajectory extension of degenerate optimal control problems,, IMACS Ann. Comput. Appl. Math., 8 (1990), 103.
|
[10] |
V. Dykhta and O. Samsonyuk, A maximum principle for smooth optimal impulsive control problems with multipoint state constraints,, Comput. Math. Math. Phys., 49 (2009), 942.
doi: 10.1134/S0965542509060050. |
[11] |
V. Gurman, On optimal processes with unbounded derivatives,, Autom. Remote Control, 17 (1972), 14. Google Scholar |
[12] |
A. Ioffe and V. Tikhomirov, Theory of Extremal Problems,, North-Holland, (1979).
|
[13] |
D. Karamzin, Necessary conditions of the minimum in an impulse optimal control problem,, J. Math. Sci., 139 (2006), 7087.
doi: 10.1007/s10958-006-0408-z. |
[14] |
B. Miller, The generalized solutions of nonlinear optimization problems with impulse control,, SIAM J. Control Optim., 34 (1996), 1420.
doi: 10.1137/S0363012994263214. |
[15] |
B. Miller and E. Rubinovich, Impulsive Control in Continuous and Discrete- Continuous Systems,, Kluwer Academic / Plenum Publishers, (2001). Google Scholar |
[16] |
M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls,, Differential Integral Equations, 8 (1995), 269.
|
[17] |
M. Motta and C. Sartori, Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data,, (2014) [published online as , (2014). Google Scholar |
[18] |
P. Pedregal and J. Tiago, Existence results for optimal control problems with some special nonlinear dependence on state and control,, SIAM J. Control Optim., 48 (2009), 415.
doi: 10.1137/08071805X. |
[19] |
F. Rampazzo and C. Sartori, Hamilton-Jacobi-Bbellman equations with fast gradient-dependence,, Indiana Univ. Math. J., 49 (2000), 1043.
doi: 10.1512/iumj.2000.49.1736. |
[20] |
R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures,, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191.
doi: 10.1137/0303016. |
[21] |
R. Vinter and F. Pereira, A maximum principle for optimal processes with discontinuous trajectories,, SIAM J. Control Optim., 26 (1988), 205.
doi: 10.1137/0326013. |
[22] |
J. Warga, Relaxed variational problems,, J. Math. Anal. Appl., 4 (1962), 111.
doi: 10.1016/0022-247X(62)90033-1. |
[23] |
J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).
|
[24] |
J. Warga, Variational problems with unbounded controls,, J. SIAM Control Ser. A, 3 (1965), 424.
doi: 10.1137/0303028. |
[25] |
S. Zavalischin and A. Sesekin, Dynamic Impulse Systems: Theory and Applications,, Kluwer Academic Publishers, (1997).
doi: 10.1007/978-94-015-8893-5. |
show all references
References:
[1] |
A. Arutyunov, D. Karamzin and F. Pereira, On constrained impulsive control problems,, J. Math. Sci., 165 (2010), 654.
doi: 10.1007/s10958-010-9834-z. |
[2] |
A. Arutyunov, D. Karamzin and F. Pereira, A nondegenerate Maximum Principle for the impulse control problem with state constraints,, SIAM J. Control Optim., 43 (2005), 1812.
doi: 10.1137/S0363012903430068. |
[3] |
J.-P. Aubin and A. Cellina, Differential Inclusions,, Springer-Verlag, (1984).
doi: 10.1007/978-3-642-69512-4. |
[4] |
A. Bressan, Impulsive control of Lagrangian systems and locomotion in fluids,, Discr. Cont. Dynam. Syst., 20 (2008), 1.
doi: 10.3934/dcds.2008.20.1. |
[5] |
A. Bressan and M. Motta, A class of mechanical systems with some coordinates as controls. A reduction of certain optimization problems for them. Solution methods,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem., 2 (1993).
|
[6] |
A. Bressan and F. Rampazzo, Moving constraints as stabilizing controls in classical mechanics,, Arch. Ration. Mech. Anal., 196 (2010), 97.
doi: 10.1007/s00205-009-0237-6. |
[7] |
A. Bressan and F. Rampazzo, On systems with quadratic impulses and their application to Lagrangean mechanics,, SIAM J. Control Optim., 31 (1993), 1205.
doi: 10.1137/0331057. |
[8] |
A. Bressan and F. Rampazzo, Impulsive control systems without commutativity assumptions,, J. Optim. Theory Appl., 81 (1994), 435.
doi: 10.1007/BF02193094. |
[9] |
V. Dykhta, Impulse-trajectory extension of degenerate optimal control problems,, IMACS Ann. Comput. Appl. Math., 8 (1990), 103.
|
[10] |
V. Dykhta and O. Samsonyuk, A maximum principle for smooth optimal impulsive control problems with multipoint state constraints,, Comput. Math. Math. Phys., 49 (2009), 942.
doi: 10.1134/S0965542509060050. |
[11] |
V. Gurman, On optimal processes with unbounded derivatives,, Autom. Remote Control, 17 (1972), 14. Google Scholar |
[12] |
A. Ioffe and V. Tikhomirov, Theory of Extremal Problems,, North-Holland, (1979).
|
[13] |
D. Karamzin, Necessary conditions of the minimum in an impulse optimal control problem,, J. Math. Sci., 139 (2006), 7087.
doi: 10.1007/s10958-006-0408-z. |
[14] |
B. Miller, The generalized solutions of nonlinear optimization problems with impulse control,, SIAM J. Control Optim., 34 (1996), 1420.
doi: 10.1137/S0363012994263214. |
[15] |
B. Miller and E. Rubinovich, Impulsive Control in Continuous and Discrete- Continuous Systems,, Kluwer Academic / Plenum Publishers, (2001). Google Scholar |
[16] |
M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls,, Differential Integral Equations, 8 (1995), 269.
|
[17] |
M. Motta and C. Sartori, Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data,, (2014) [published online as , (2014). Google Scholar |
[18] |
P. Pedregal and J. Tiago, Existence results for optimal control problems with some special nonlinear dependence on state and control,, SIAM J. Control Optim., 48 (2009), 415.
doi: 10.1137/08071805X. |
[19] |
F. Rampazzo and C. Sartori, Hamilton-Jacobi-Bbellman equations with fast gradient-dependence,, Indiana Univ. Math. J., 49 (2000), 1043.
doi: 10.1512/iumj.2000.49.1736. |
[20] |
R. Rishel, An extended Pontryagin principle for control systems whose control laws contain measures,, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 191.
doi: 10.1137/0303016. |
[21] |
R. Vinter and F. Pereira, A maximum principle for optimal processes with discontinuous trajectories,, SIAM J. Control Optim., 26 (1988), 205.
doi: 10.1137/0326013. |
[22] |
J. Warga, Relaxed variational problems,, J. Math. Anal. Appl., 4 (1962), 111.
doi: 10.1016/0022-247X(62)90033-1. |
[23] |
J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).
|
[24] |
J. Warga, Variational problems with unbounded controls,, J. SIAM Control Ser. A, 3 (1965), 424.
doi: 10.1137/0303028. |
[25] |
S. Zavalischin and A. Sesekin, Dynamic Impulse Systems: Theory and Applications,, Kluwer Academic Publishers, (1997).
doi: 10.1007/978-94-015-8893-5. |
[1] |
Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061 |
[2] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[3] |
C.Z. Wu, K. L. Teo. Global impulsive optimal control computation. Journal of Industrial & Management Optimization, 2006, 2 (4) : 435-450. doi: 10.3934/jimo.2006.2.435 |
[4] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[5] |
Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161 |
[6] |
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 |
[7] |
Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022 |
[8] |
Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275 |
[9] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[10] |
Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 |
[11] |
Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455 |
[12] |
Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial & Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591 |
[13] |
Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 |
[14] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
[15] |
Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019041 |
[16] |
Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164 |
[17] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[18] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[19] |
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028 |
[20] |
Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]