Citation: |
[1] |
D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 1 and 2, Athena Scientific, Belmont, MA, 1995. |
[2] |
H. G. Bock, M. Diehl, E. A. Kostina and J. P. Schlöder, Constrained optimal feedback control of systems governed by large differential algebraic equations, In L. Biegler, O. Ghattas, M. Heikenschloss, D. Keyes, and B. Bloemen Waanders, editors, Real-Time PDE-Constrained Optimization, SIAM, 3 (2007), 3-24.doi: 10.1137/1.9780898718935.ch1. |
[3] |
C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems, in M. Grötschel, S. O. Krumke, J. Rambau, eds., Online Optimization of Large Scale Systems, Springer-Verlag, Berlin, (2001), 3-16. |
[4] |
L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems, SIAM Journal on Control and Optimization, 48 (2009), 1206-1228.doi: 10.1137/070707853. |
[5] |
L. Grüne, Economic receding horizon control without terminal constraints, Automatica, 49 (2013), 725-734.doi: 10.1016/j.automatica.2012.12.003. |
[6] |
L. Grüne and V. G. Palma, On the Benefit of Re-optimization in Optimal Control under Perturbations, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems - MTNS, (2014), 439-446. |
[7] |
L. Grüne and J. Pannek, Practical NMPC suboptimality estimates along trajectories, Systems & Control Letters, 58 (2009), 161-168.doi: 10.1016/j.sysconle.2008.10.012. |
[8] |
L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms, Springer-Verlag, London, 2011.doi: 10.1007/978-0-85729-501-9. |
[9] |
L. Grüne, J. Pannek, M. Seehafer and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with varying control horizon, SIAM Journal on Control and Optimization, 48 (2010), 4938-4962.doi: 10.1137/090758696. |
[10] |
L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers, IEEE Trans. Automat. Control, 53 (2008), 2100-2111.doi: 10.1109/TAC.2008.927799. |
[11] |
C. M. Kellett, H. Shim and A. R. Teel, Further results on robustness of (possibly discontinuous) sample and hold feedback, IEEE Trans. Automat. Control, 49 (2004), 1081-1089.doi: 10.1109/TAC.2004.831184. |
[12] | |
[13] |
H. Maurer and H. J. Pesch, Solution Differentiability for Parametric Nonlinear Control Problems with Control-State Constraints, SIAM Journal on Control and Optimization, 86 (1995), 285-309.doi: 10.1007/BF02192081. |
[14] |
V. Palma and L. Grüne, Stability, performance and robustness of sensitivity-based multistep feedback NMPC, Extended Abstract in: Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems - MTNS 2012, CD-ROM, Paper No. 68, 4 pages. |
[15] |
J. Pannek, J. Michael and M. Gerdts, A general framework for nonlinear model predictive control with abstract updates, arXiv preprint, arXiv:1309.1610. |
[16] |
H. J. Pesch, Numerical computation of neighboring optimum feedback control schemes in real-time, Applied Mathematics and Optimization, 5 (1979), 231-252.doi: 10.1007/BF01442556. |
[17] |
J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design. Nob Hill Publishing, Madison, 2009. |
[18] |
E. D. Sontag, Clocks and Insensitivity to Small Measurement Errors, ESAIM Control Optim. Calc. Var, 4 (1999), 537-557.doi: 10.1051/cocv:1999121. |
[19] |
V. Zavala and L. Biegler, The advanced-step NMPC controller: Optimality, stability and robustness, Automatica, 45 (2009), 86-93.doi: 10.1016/j.automatica.2008.06.011. |