\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains

Abstract Related Papers Cited by
  • The regularity of the pullback random attractor for a stochastic FitzHugh-Nagumo system on $\mathbb R^n$ driven by deterministic non-autonomous forcing is proved. More precisely, the pullback random attractor is shown to be compact in $H^1(\mathbb R^n)\times L^2(\mathbb R^n)$ and attract all tempered sets of $L^2(\mathbb R^n)\times L^2(\mathbb R^n)$ in the topology of $H^1(\mathbb R^n)\times L^2(\mathbb R^n)$. The proof is based on tail estimates technique, eigenvalues of the Laplace operator in bounded domains and some new estimates of solutions.
    Mathematics Subject Classification: Primary: 35B40, 35B41, 37L30, 37L55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing, Discrete Continuous Dyn. Syst., Series B, 18 (2013), 643-666.doi: 10.3934/dcdsb.2013.18.643.

    [2]

    C. T. Anh, T. Q. Bao and N. V. Thanh, Regularity of random attractors for stochastic semilinear degenerate parabolic equations, Electronic J. Diff. Eqs., (2012), 1-22.

    [3]

    L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.doi: 10.1007/978-3-662-12878-7.

    [4]

    T. Q. Bao, Regularity of random attractors for stochastic reaction-diffusion equations on unbounded domains, submitted.

    [5]

    J. W. Cholewa and T. Dlotko, Global Attractors for Abstract Parabolic Problems, Cambridge University Press, 2000.doi: 10.1017/CBO9780511526404.

    [6]

    H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.doi: 10.1007/BF02219225.

    [7]

    H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705.

    [8]

    J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises, Physica D, 233 (2007), 83-94.doi: 10.1016/j.physd.2007.06.008.

    [9]

    P. E. Kloeden and J. A. Langa Flattening, Squeezing and the existence of random attractors, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163-181.doi: 10.1098/rspa.2006.1753.

    [10]

    Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.doi: 10.1016/j.jde.2008.06.031.

    [11]

    Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations, Appl. Maths. Comput., 190 (2007), 1020-1029.doi: 10.1016/j.amc.2006.11.187.

    [12]

    E. V. Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems, Physica D, 212 (2005), 317-336.doi: 10.1016/j.physd.2005.10.006.

    [13]

    B. Wang, Pullback attractors for non-autonomous Reaction-Diffusion equations on $\mathbb R^n$, Frontiers of Mathematics in China, 4 (2009), 563-583.doi: 10.1007/s11464-009-0033-5.

    [14]

    B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Differential Equations, 246 (2009), 2506-2537.doi: 10.1016/j.jde.2008.10.012.

    [15]

    B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal. TMA, 71 (2009), 2811-2828.doi: 10.1016/j.na.2009.01.131.

    [16]

    B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.doi: 10.1016/j.jde.2012.05.015.

    [17]

    B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.doi: 10.1016/S0167-2789(98)00304-2.

    [18]

    B. Wang and X. Gao, Random attractors for wave equations on unbounded domains, Discrete Continuous Dyn. Syst. (suppl.), (2009), 800-809.doi: 10.1016/j.nonrwa.2011.06.008.

    [19]

    G. Wang and Y. Tang, $(L^2,H^1)$-random attractors for stochastic reaction diffusion equation on unbounded domains, Abstr. Appl. Anal., (2013), 279509, 23 pp.

    [20]

    Y. Wang and C. K. Zhong, On the existence of pullback attractors for non-autonomous reaction diffusion, Dyn. Syst., 23 (2008), 1-16.doi: 10.1080/14689360701611821.

    [21]

    B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains, Nonlinear Anal. TMA, 70 (2009), 3799-3815.doi: 10.1016/j.na.2008.07.011.

    [22]

    B. Wang, Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems, Internat. J. Bifur. Chaos, 17 (2007), 1673-1685.doi: 10.1142/S0218127407017987.

    [23]

    L. Xu and W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwanese J. Maths., 16 (2012), 1079-1103.

    [24]

    W. Zhao and Y. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal. TMA, 75 (2012), 485-502.doi: 10.1016/j.na.2011.08.050.

    [25]

    W. Zhao, $H^1$-random attractors for stochastic reaction diffusion equations with additive noise, Nonlinear Anal. TMA., 84 (2013), 61-72.doi: 10.1016/j.na.2013.01.014.

    [26]

    W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction diffusion equations with multiplicative noises, Comm. Nonlinear Sci. Numer. Simulat., 18 (2013), 2707-2721.doi: 10.1016/j.cnsns.2013.03.012.

    [27]

    C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, J. Differential Equations, 223 (2006), 367-399.doi: 10.1016/j.jde.2005.06.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return