January  2015, 35(1): 441-466. doi: 10.3934/dcds.2015.35.441

Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains

1. 

Institute of Mathematics and Scientific Computing, University of Graz, 36 Heinrichstraβe, 8010 Graz, Austria

Received  November 2013 Revised  May 2014 Published  August 2014

The regularity of the pullback random attractor for a stochastic FitzHugh-Nagumo system on $\mathbb R^n$ driven by deterministic non-autonomous forcing is proved. More precisely, the pullback random attractor is shown to be compact in $H^1(\mathbb R^n)\times L^2(\mathbb R^n)$ and attract all tempered sets of $L^2(\mathbb R^n)\times L^2(\mathbb R^n)$ in the topology of $H^1(\mathbb R^n)\times L^2(\mathbb R^n)$. The proof is based on tail estimates technique, eigenvalues of the Laplace operator in bounded domains and some new estimates of solutions.
Citation: Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441
References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing,, Discrete Continuous Dyn. Syst., 18 (2013), 643.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

C. T. Anh, T. Q. Bao and N. V. Thanh, Regularity of random attractors for stochastic semilinear degenerate parabolic equations,, Electronic J. Diff. Eqs., (2012), 1.   Google Scholar

[3]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[4]

T. Q. Bao, Regularity of random attractors for stochastic reaction-diffusion equations on unbounded domains,, submitted., ().   Google Scholar

[5]

J. W. Cholewa and T. Dlotko, Global Attractors for Abstract Parabolic Problems,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511526404.  Google Scholar

[6]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[8]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises,, Physica D, 233 (2007), 83.  doi: 10.1016/j.physd.2007.06.008.  Google Scholar

[9]

P. E. Kloeden and J. A. Langa Flattening, Squeezing and the existence of random attractors,, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[10]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations,, J. Differential Equations, 245 (2008), 1775.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[11]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, Appl. Maths. Comput., 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[12]

E. V. Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems,, Physica D, 212 (2005), 317.  doi: 10.1016/j.physd.2005.10.006.  Google Scholar

[13]

B. Wang, Pullback attractors for non-autonomous Reaction-Diffusion equations on $\mathbb R^n$,, Frontiers of Mathematics in China, 4 (2009), 563.  doi: 10.1007/s11464-009-0033-5.  Google Scholar

[14]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains,, J. Differential Equations, 246 (2009), 2506.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[15]

B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,, Nonlinear Anal. TMA, 71 (2009), 2811.  doi: 10.1016/j.na.2009.01.131.  Google Scholar

[16]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[17]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains,, Physica D, 128 (1999), 41.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[18]

B. Wang and X. Gao, Random attractors for wave equations on unbounded domains,, Discrete Continuous Dyn. Syst. (suppl.), (2009), 800.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[19]

G. Wang and Y. Tang, $(L^2,H^1)$-random attractors for stochastic reaction diffusion equation on unbounded domains,, Abstr. Appl. Anal., (2013).   Google Scholar

[20]

Y. Wang and C. K. Zhong, On the existence of pullback attractors for non-autonomous reaction diffusion,, Dyn. Syst., 23 (2008), 1.  doi: 10.1080/14689360701611821.  Google Scholar

[21]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains,, Nonlinear Anal. TMA, 70 (2009), 3799.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[22]

B. Wang, Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems,, Internat. J. Bifur. Chaos, 17 (2007), 1673.  doi: 10.1142/S0218127407017987.  Google Scholar

[23]

L. Xu and W. Yan, Stochastic FitzHugh-Nagumo systems with delay,, Taiwanese J. Maths., 16 (2012), 1079.   Google Scholar

[24]

W. Zhao and Y. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains,, Nonlinear Anal. TMA, 75 (2012), 485.  doi: 10.1016/j.na.2011.08.050.  Google Scholar

[25]

W. Zhao, $H^1$-random attractors for stochastic reaction diffusion equations with additive noise,, Nonlinear Anal. TMA., 84 (2013), 61.  doi: 10.1016/j.na.2013.01.014.  Google Scholar

[26]

W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction diffusion equations with multiplicative noises,, Comm. Nonlinear Sci. Numer. Simulat., 18 (2013), 2707.  doi: 10.1016/j.cnsns.2013.03.012.  Google Scholar

[27]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, J. Differential Equations, 223 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

show all references

References:
[1]

A. Adili and B. Wang, Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing,, Discrete Continuous Dyn. Syst., 18 (2013), 643.  doi: 10.3934/dcdsb.2013.18.643.  Google Scholar

[2]

C. T. Anh, T. Q. Bao and N. V. Thanh, Regularity of random attractors for stochastic semilinear degenerate parabolic equations,, Electronic J. Diff. Eqs., (2012), 1.   Google Scholar

[3]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[4]

T. Q. Bao, Regularity of random attractors for stochastic reaction-diffusion equations on unbounded domains,, submitted., ().   Google Scholar

[5]

J. W. Cholewa and T. Dlotko, Global Attractors for Abstract Parabolic Problems,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511526404.  Google Scholar

[6]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dynam. Differential Equations, 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[7]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[8]

J. Huang, The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises,, Physica D, 233 (2007), 83.  doi: 10.1016/j.physd.2007.06.008.  Google Scholar

[9]

P. E. Kloeden and J. A. Langa Flattening, Squeezing and the existence of random attractors,, Proc. R. Soc. Lond. Ser. A, 463 (2007), 163.  doi: 10.1098/rspa.2006.1753.  Google Scholar

[10]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations,, J. Differential Equations, 245 (2008), 1775.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[11]

Y. Li and C. Zhong, Pullback attractors for the norm-to-weak continuous process and application to the nonautonomous reaction-diffusion equations,, Appl. Maths. Comput., 190 (2007), 1020.  doi: 10.1016/j.amc.2006.11.187.  Google Scholar

[12]

E. V. Vleck and B. Wang, Attractors for lattice FitzHugh-Nagumo systems,, Physica D, 212 (2005), 317.  doi: 10.1016/j.physd.2005.10.006.  Google Scholar

[13]

B. Wang, Pullback attractors for non-autonomous Reaction-Diffusion equations on $\mathbb R^n$,, Frontiers of Mathematics in China, 4 (2009), 563.  doi: 10.1007/s11464-009-0033-5.  Google Scholar

[14]

B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains,, J. Differential Equations, 246 (2009), 2506.  doi: 10.1016/j.jde.2008.10.012.  Google Scholar

[15]

B. Wang, Random attractors for the stochastic FitzHugh-Nagumo system on unbounded domains,, Nonlinear Anal. TMA, 71 (2009), 2811.  doi: 10.1016/j.na.2009.01.131.  Google Scholar

[16]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[17]

B. Wang, Attractors for reaction-diffusion equations in unbounded domains,, Physica D, 128 (1999), 41.  doi: 10.1016/S0167-2789(98)00304-2.  Google Scholar

[18]

B. Wang and X. Gao, Random attractors for wave equations on unbounded domains,, Discrete Continuous Dyn. Syst. (suppl.), (2009), 800.  doi: 10.1016/j.nonrwa.2011.06.008.  Google Scholar

[19]

G. Wang and Y. Tang, $(L^2,H^1)$-random attractors for stochastic reaction diffusion equation on unbounded domains,, Abstr. Appl. Anal., (2013).   Google Scholar

[20]

Y. Wang and C. K. Zhong, On the existence of pullback attractors for non-autonomous reaction diffusion,, Dyn. Syst., 23 (2008), 1.  doi: 10.1080/14689360701611821.  Google Scholar

[21]

B. Wang, Pullback attractors for the non-autonomous FitzHugh-Nagumo system on unbounded domains,, Nonlinear Anal. TMA, 70 (2009), 3799.  doi: 10.1016/j.na.2008.07.011.  Google Scholar

[22]

B. Wang, Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems,, Internat. J. Bifur. Chaos, 17 (2007), 1673.  doi: 10.1142/S0218127407017987.  Google Scholar

[23]

L. Xu and W. Yan, Stochastic FitzHugh-Nagumo systems with delay,, Taiwanese J. Maths., 16 (2012), 1079.   Google Scholar

[24]

W. Zhao and Y. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion equation on unbounded domains,, Nonlinear Anal. TMA, 75 (2012), 485.  doi: 10.1016/j.na.2011.08.050.  Google Scholar

[25]

W. Zhao, $H^1$-random attractors for stochastic reaction diffusion equations with additive noise,, Nonlinear Anal. TMA., 84 (2013), 61.  doi: 10.1016/j.na.2013.01.014.  Google Scholar

[26]

W. Zhao, $H^1$-random attractors and random equilibria for stochastic reaction diffusion equations with multiplicative noises,, Comm. Nonlinear Sci. Numer. Simulat., 18 (2013), 2707.  doi: 10.1016/j.cnsns.2013.03.012.  Google Scholar

[27]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, J. Differential Equations, 223 (2006), 367.  doi: 10.1016/j.jde.2005.06.008.  Google Scholar

[1]

Abiti Adili, Bixiang Wang. Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 643-666. doi: 10.3934/dcdsb.2013.18.643

[2]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[3]

Dingshi Li, Xiaohu Wang, Junyilang Zhao. Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2751-2776. doi: 10.3934/cpaa.2020120

[4]

Anhui Gu, Bixiang Wang. Asymptotic behavior of random fitzhugh-nagumo systems driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1689-1720. doi: 10.3934/dcdsb.2018072

[5]

Fuzhi Li, Dongmei Xu. Regular dynamics for stochastic Fitzhugh-Nagumo systems with additive noise on thin domains. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020244

[6]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020172

[7]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[8]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[9]

Vyacheslav Maksimov. Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems. Evolution Equations & Control Theory, 2017, 6 (4) : 559-586. doi: 10.3934/eect.2017028

[10]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[11]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[12]

Yangrong Li, Jinyan Yin. A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

[13]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[14]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[15]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020189

[16]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

[17]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

[18]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[19]

Francesco Cordoni, Luca Di Persio. Optimal control for the stochastic FitzHugh-Nagumo model with recovery variable. Evolution Equations & Control Theory, 2018, 7 (4) : 571-585. doi: 10.3934/eect.2018027

[20]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]