\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal control of differential inclusions on manifolds

Abstract / Introduction Related Papers Cited by
  • Dynamic optimization problems for differential inclusions on manifolds are considered. A mathematical framework for derivation of optimality conditions for generalized dynamical systems is proposed. We obtain optimality conditions in form of generalized Euler-Lagrange relations and in form of partially convexified Hamiltonian inclusions by using metric regularity of terminal and dynamic constraints.
    Mathematics Subject Classification: Primary: 49K21, 49K27; Secondary: 34A60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint, Springer-Verlag, Heidelberg, 2004.doi: 10.1007/978-3-662-06404-7.

    [2]

    M. Barbero-Liñán and M. Muñoz-Lecanda, Geometric approach to Pontryagins maximum principle, Acta applicandae mathematicae, 108 (2009), 429-485.doi: 10.1007/s10440-008-9320-5.

    [3]

    A. Bennett, Lagrangian Fluid Dynamics, Cambridge University Press, Cambridge, 2006.doi: 10.1017/CBO9780511734939.

    [4]

    D. Bessis, Yu. Ledyaev and R. Vinter, Dualization of the Euler and Hamiltonian inclusions, Nonlinear Analysis, 43 (2001), 861-882.doi: 10.1016/S0362-546X(99)00238-2.

    [5]

    J. Bismut, Large Deviations and the Malliavin Calculus, Birkhäuser, Boston, 1984.

    [6]

    J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl., 48 (1986), 9-52.doi: 10.1007/BF00938588.

    [7]

    F. Clarke, Yu. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.

    [8]

    F. Clarke, Necessary conditions in dynamic optimization, Mem. Amer. Math. Soc., 173 (2005), x+113 pp.doi: 10.1090/memo/0816.

    [9]

    F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Springer, London, 2013.doi: 10.1007/978-1-4471-4820-3.

    [10]

    E. N. Devdariani and Yu. S. Ledyaev, Maximum principle for implicit control systems, Appl. Math. Optim., 40 (1999), 79-103.doi: 10.1007/s002459900117.

    [11]

    R. Gamkrelidze, Principles of Optimal Control Theory, Plenum Press, New York, 1978.

    [12]

    A. D. Ioffe, Regular points of Lipschitz functions, Trans. Amer. Math. Soc., 251 (1979), 61-69.doi: 10.1090/S0002-9947-1979-0531969-6.

    [13]

    A. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization, Transactions of the American Mathematical Society, 349 (1997), 2871-2900.doi: 10.1090/S0002-9947-97-01795-9.

    [14]

    A. Ioffe and R. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems, Calculus of Variations and Partial Differential Equations, 4 (1996), 59-87.doi: 10.1007/BF01322309.

    [15]

    V. Jurdjevic, Geometric control theory, Cambridge University Press, Cambridge, 1997.

    [16]

    I. Kolar and P. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.doi: 10.1007/978-3-662-02950-3.

    [17]

    Yu. S. Ledyaev, Theorems on an implicitly given set-valued mapping, Dokl. Akad. Nauk SSSR, 276 (1984), 543-546.

    [18]

    Yu. Ledyaev and Q. Zhu, Nonsmooth analysis on smooth manifolds, Transactions of the American Mathematical Society, 359 (2007), 3687-3732.doi: 10.1090/S0002-9947-07-04075-5.

    [19]

    J. Lee, Introduction to Smooth Manifolds, Springer-Verlag, New York, 2013.

    [20]

    P. Loewen and R. Rockafellar, Optimal control of unbounded differential inclusions, SIAM Journal of Control and Optimization, 32 (1994), 442-470.doi: 10.1137/S0363012991217494.

    [21]

    M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces, Quaderni del Dipartimento di Matematica dell'Università del Salento, 16 (1978).

    [22]

    B. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions, SIAM Journal of Control and Optimization, 33 (1995), 882-915.doi: 10.1137/S0363012993245665.

    [23]

    B. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331, Springer, Berlin, 2006.

    [24]

    R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence, 2002.

    [25]

    L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962.

    [26]

    G. Smirnov, Introduction to the Theory of Differential Inclusions, American Mathematical Society, Providence, 2002.

    [27]

    H. Sussman, Symmetries and integrals of motion in optimal control, Geometry in nonlinear control and differential inclusions. Mathematics institute of Polish academy of sciences. Banach center publications, 32 (1995), 379-393.

    [28]

    R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems, SIAM journal on control and optimization, 35 (1997), 56-77.doi: 10.1137/S0363012995283133.

    [29]

    R. Vinter and P. Woodford, On the occurrence of intermediate local minimizers that are not strong local minimizers, Systems & Control Letters, 31 (1997), 235-242.doi: 10.1016/S0167-6911(97)00041-8.

    [30]

    R. Vinter, The Hamiltonian inclusion for nonconvex velocity sets, SIAM Journal on Optimization and Control, 52 (2014), 1237-1250.doi: 10.1137/130917417.

    [31]

    J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return