September  2015, 35(9): 4455-4475. doi: 10.3934/dcds.2015.35.4455

Optimal control of differential inclusions on manifolds

1. 

Department of Mathematics and Statistics, Queen's University, Kingston, ON, K7L 3N6, Canada

2. 

Department of Mathematics, Western Michigan University, Kalamazoo, MI, 49008-5248, United States

Received  April 2014 Revised  October 2014 Published  April 2015

Dynamic optimization problems for differential inclusions on manifolds are considered. A mathematical framework for derivation of optimality conditions for generalized dynamical systems is proposed. We obtain optimality conditions in form of generalized Euler-Lagrange relations and in form of partially convexified Hamiltonian inclusions by using metric regularity of terminal and dynamic constraints.
Citation: Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455
References:
[1]

A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint,, Springer-Verlag, (2004). doi: 10.1007/978-3-662-06404-7.

[2]

M. Barbero-Liñán and M. Muñoz-Lecanda, Geometric approach to Pontryagins maximum principle,, Acta applicandae mathematicae, 108 (2009), 429. doi: 10.1007/s10440-008-9320-5.

[3]

A. Bennett, Lagrangian Fluid Dynamics,, Cambridge University Press, (2006). doi: 10.1017/CBO9780511734939.

[4]

D. Bessis, Yu. Ledyaev and R. Vinter, Dualization of the Euler and Hamiltonian inclusions,, Nonlinear Analysis, 43 (2001), 861. doi: 10.1016/S0362-546X(99)00238-2.

[5]

J. Bismut, Large Deviations and the Malliavin Calculus,, Birkhäuser, (1984).

[6]

J. M. Borwein, Stability and regular points of inequality systems,, J. Optim. Theory Appl., 48 (1986), 9. doi: 10.1007/BF00938588.

[7]

F. Clarke, Yu. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory,, Springer-Verlag, (1998).

[8]

F. Clarke, Necessary conditions in dynamic optimization,, Mem. Amer. Math. Soc., 173 (2005). doi: 10.1090/memo/0816.

[9]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,, Springer, (2013). doi: 10.1007/978-1-4471-4820-3.

[10]

E. N. Devdariani and Yu. S. Ledyaev, Maximum principle for implicit control systems,, Appl. Math. Optim., 40 (1999), 79. doi: 10.1007/s002459900117.

[11]

R. Gamkrelidze, Principles of Optimal Control Theory,, Plenum Press, (1978).

[12]

A. D. Ioffe, Regular points of Lipschitz functions,, Trans. Amer. Math. Soc., 251 (1979), 61. doi: 10.1090/S0002-9947-1979-0531969-6.

[13]

A. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization,, Transactions of the American Mathematical Society, 349 (1997), 2871. doi: 10.1090/S0002-9947-97-01795-9.

[14]

A. Ioffe and R. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems,, Calculus of Variations and Partial Differential Equations, 4 (1996), 59. doi: 10.1007/BF01322309.

[15]

V. Jurdjevic, Geometric control theory,, Cambridge University Press, (1997).

[16]

I. Kolar and P. Michor and J. Slovák, Natural Operations in Differential Geometry,, Springer-Verlag, (1993). doi: 10.1007/978-3-662-02950-3.

[17]

Yu. S. Ledyaev, Theorems on an implicitly given set-valued mapping,, Dokl. Akad. Nauk SSSR, 276 (1984), 543.

[18]

Yu. Ledyaev and Q. Zhu, Nonsmooth analysis on smooth manifolds,, Transactions of the American Mathematical Society, 359 (2007), 3687. doi: 10.1090/S0002-9947-07-04075-5.

[19]

J. Lee, Introduction to Smooth Manifolds,, Springer-Verlag, (2013).

[20]

P. Loewen and R. Rockafellar, Optimal control of unbounded differential inclusions,, SIAM Journal of Control and Optimization, 32 (1994), 442. doi: 10.1137/S0363012991217494.

[21]

M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces,, Quaderni del Dipartimento di Matematica dell'Università del Salento, 16 (1978).

[22]

B. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions,, SIAM Journal of Control and Optimization, 33 (1995), 882. doi: 10.1137/S0363012993245665.

[23]

B. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331,, Springer, (2006).

[24]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,, American Mathematical Society, (2002).

[25]

L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The Mathematical Theory of Optimal Processes,, John Wiley & Sons, (1962).

[26]

G. Smirnov, Introduction to the Theory of Differential Inclusions,, American Mathematical Society, (2002).

[27]

H. Sussman, Symmetries and integrals of motion in optimal control,, Geometry in nonlinear control and differential inclusions. Mathematics institute of Polish academy of sciences. Banach center publications, 32 (1995), 379.

[28]

R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems,, SIAM journal on control and optimization, 35 (1997), 56. doi: 10.1137/S0363012995283133.

[29]

R. Vinter and P. Woodford, On the occurrence of intermediate local minimizers that are not strong local minimizers,, Systems & Control Letters, 31 (1997), 235. doi: 10.1016/S0167-6911(97)00041-8.

[30]

R. Vinter, The Hamiltonian inclusion for nonconvex velocity sets,, SIAM Journal on Optimization and Control, 52 (2014), 1237. doi: 10.1137/130917417.

[31]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).

show all references

References:
[1]

A. Agrachev and Yu. Sachkov, Control Theory from the Geometric Viewpoint,, Springer-Verlag, (2004). doi: 10.1007/978-3-662-06404-7.

[2]

M. Barbero-Liñán and M. Muñoz-Lecanda, Geometric approach to Pontryagins maximum principle,, Acta applicandae mathematicae, 108 (2009), 429. doi: 10.1007/s10440-008-9320-5.

[3]

A. Bennett, Lagrangian Fluid Dynamics,, Cambridge University Press, (2006). doi: 10.1017/CBO9780511734939.

[4]

D. Bessis, Yu. Ledyaev and R. Vinter, Dualization of the Euler and Hamiltonian inclusions,, Nonlinear Analysis, 43 (2001), 861. doi: 10.1016/S0362-546X(99)00238-2.

[5]

J. Bismut, Large Deviations and the Malliavin Calculus,, Birkhäuser, (1984).

[6]

J. M. Borwein, Stability and regular points of inequality systems,, J. Optim. Theory Appl., 48 (1986), 9. doi: 10.1007/BF00938588.

[7]

F. Clarke, Yu. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analysis and Control Theory,, Springer-Verlag, (1998).

[8]

F. Clarke, Necessary conditions in dynamic optimization,, Mem. Amer. Math. Soc., 173 (2005). doi: 10.1090/memo/0816.

[9]

F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control,, Springer, (2013). doi: 10.1007/978-1-4471-4820-3.

[10]

E. N. Devdariani and Yu. S. Ledyaev, Maximum principle for implicit control systems,, Appl. Math. Optim., 40 (1999), 79. doi: 10.1007/s002459900117.

[11]

R. Gamkrelidze, Principles of Optimal Control Theory,, Plenum Press, (1978).

[12]

A. D. Ioffe, Regular points of Lipschitz functions,, Trans. Amer. Math. Soc., 251 (1979), 61. doi: 10.1090/S0002-9947-1979-0531969-6.

[13]

A. Ioffe, Euler-Lagrange and Hamiltonian formalisms in dynamic optimization,, Transactions of the American Mathematical Society, 349 (1997), 2871. doi: 10.1090/S0002-9947-97-01795-9.

[14]

A. Ioffe and R. Rockafellar, The Euler and Weierstrass conditions for nonsmooth variational problems,, Calculus of Variations and Partial Differential Equations, 4 (1996), 59. doi: 10.1007/BF01322309.

[15]

V. Jurdjevic, Geometric control theory,, Cambridge University Press, (1997).

[16]

I. Kolar and P. Michor and J. Slovák, Natural Operations in Differential Geometry,, Springer-Verlag, (1993). doi: 10.1007/978-3-662-02950-3.

[17]

Yu. S. Ledyaev, Theorems on an implicitly given set-valued mapping,, Dokl. Akad. Nauk SSSR, 276 (1984), 543.

[18]

Yu. Ledyaev and Q. Zhu, Nonsmooth analysis on smooth manifolds,, Transactions of the American Mathematical Society, 359 (2007), 3687. doi: 10.1090/S0002-9947-07-04075-5.

[19]

J. Lee, Introduction to Smooth Manifolds,, Springer-Verlag, (2013).

[20]

P. Loewen and R. Rockafellar, Optimal control of unbounded differential inclusions,, SIAM Journal of Control and Optimization, 32 (1994), 442. doi: 10.1137/S0363012991217494.

[21]

M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces,, Quaderni del Dipartimento di Matematica dell'Università del Salento, 16 (1978).

[22]

B. Mordukhovich, Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions,, SIAM Journal of Control and Optimization, 33 (1995), 882. doi: 10.1137/S0363012993245665.

[23]

B. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331,, Springer, (2006).

[24]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications,, American Mathematical Society, (2002).

[25]

L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The Mathematical Theory of Optimal Processes,, John Wiley & Sons, (1962).

[26]

G. Smirnov, Introduction to the Theory of Differential Inclusions,, American Mathematical Society, (2002).

[27]

H. Sussman, Symmetries and integrals of motion in optimal control,, Geometry in nonlinear control and differential inclusions. Mathematics institute of Polish academy of sciences. Banach center publications, 32 (1995), 379.

[28]

R. Vinter and H. Zheng, The extended Euler-Lagrange condition for nonconvex variational problems,, SIAM journal on control and optimization, 35 (1997), 56. doi: 10.1137/S0363012995283133.

[29]

R. Vinter and P. Woodford, On the occurrence of intermediate local minimizers that are not strong local minimizers,, Systems & Control Letters, 31 (1997), 235. doi: 10.1016/S0167-6911(97)00041-8.

[30]

R. Vinter, The Hamiltonian inclusion for nonconvex velocity sets,, SIAM Journal on Optimization and Control, 52 (2014), 1237. doi: 10.1137/130917417.

[31]

J. Warga, Optimal Control of Differential and Functional Equations,, Academic Press, (1972).

[1]

Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629

[2]

Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095

[3]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[4]

B. Bonnard, J.-B. Caillau, E. Trélat. Second order optimality conditions with applications. Conference Publications, 2007, 2007 (Special) : 145-154. doi: 10.3934/proc.2007.2007.145

[5]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[6]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[7]

Rinaldo M. Colombo, Graziano Guerra. Differential equations in metric spaces with applications. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 733-753. doi: 10.3934/dcds.2009.23.733

[8]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Hiroki Tanabe, Atsushi Yagi. Necessary and sufficient conditions for maximal regularity in the study of elliptic differential equations in Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 973-987. doi: 10.3934/dcds.2008.22.973

[9]

Klaus-Jochen Engel, Marjeta Kramar Fijavž. Waves and diffusion on metric graphs with general vertex conditions. Evolution Equations & Control Theory, 2019, 8 (3) : 633-661. doi: 10.3934/eect.2019030

[10]

Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control & Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291

[11]

Ying Gao, Xinmin Yang, Kok Lay Teo. Optimality conditions for approximate solutions of vector optimization problems. Journal of Industrial & Management Optimization, 2011, 7 (2) : 483-496. doi: 10.3934/jimo.2011.7.483

[12]

Adela Capătă. Optimality conditions for vector equilibrium problems and their applications. Journal of Industrial & Management Optimization, 2013, 9 (3) : 659-669. doi: 10.3934/jimo.2013.9.659

[13]

Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial & Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783

[14]

Majid E. Abbasov. Generalized exhausters: Existence, construction, optimality conditions. Journal of Industrial & Management Optimization, 2015, 11 (1) : 217-230. doi: 10.3934/jimo.2015.11.217

[15]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

[16]

Mansoureh Alavi Hejazi, Soghra Nobakhtian. Optimality conditions for multiobjective fractional programming, via convexificators. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-9. doi: 10.3934/jimo.2018170

[17]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[18]

Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087

[19]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[20]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]