September  2015, 35(9): 4503-4525. doi: 10.3934/dcds.2015.35.4503

Expediting the transition from non-renewable to renewable energy via optimal control

1. 

Institute of Computational and Applied Mathematics, University of Muenster, Einsteinstr. 62, D-48149 Muenster

2. 

New School for Social Research, Department of Economics, 6 East 16th Street, D-1123, New York, NY 10003, United States

Received  April 2014 Revised  October 2014 Published  April 2015

Much recent climate research suggests that the transition from non-renewable to renewable energy should be expedited. To address this issue we use an optimal control model, based on an integrated assessment model of climate change that includes two types energy production. After setting up the model, we derive necessary optimality conditions in the form of a Pontryagin type Maximum Principle. We use a numerical discretization method for optimal control problems to explore various policy scenarios. The algorithm allows to compute both state and co-state variables by providing a consistent numerical approximation for the adjoint variables of the various scenarios. Our numerical method applies to control and state-constrained control problems as well as to delayed control problems. In the policy scenarios, we explore ways how the transition from non-renewable to renewable energy can be expedited.
Citation: Helmut Maurer, Willi Semmler. Expediting the transition from non-renewable to renewable energy via optimal control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4503-4525. doi: 10.3934/dcds.2015.35.4503
References:
[1]

K. J. Arrow and M. Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy,, The John Hopkins Press, (1970).   Google Scholar

[2]

T. Brechet, C. Carmacho and V. M. Veliov, Model predictive control, the economy, and the issue of global warming,, Annals of Operations Research, 220 (2014), 25.  doi: 10.1007/s10479-011-0881-8.  Google Scholar

[3]

M. M. Byrne, Is growth a dirty word? pollution, abatement and endogenous growth,, Journal of Development Economics, 54 (1997), 261.  doi: 10.1016/S0304-3878(97)00043-6.  Google Scholar

[4]

C. W. Clark, Mathematical Bioeconomis: The Optimal Management of Renewable Resources,, John Wiley $&$ Sons, (1976).   Google Scholar

[5]

R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,, Duxbury Press, (1993).   Google Scholar

[6]

L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control and mixed control-state constraints,, Optimal Control Applications and Methods, 30 (2009), 341.  doi: 10.1002/oca.843.  Google Scholar

[7]

L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Special Issue on Computational Methods for Optimization and Control, 10 (2014), 413.   Google Scholar

[8]

A. Greiner, L. Grüne and W. Semmler, Growth and climate change: Threshold and multiple equilibria,, in J. Crespo Cuaresma, 12 (2010), 63.  doi: 10.1007/978-3-642-02132-9_4.  Google Scholar

[9]

A. Greiner, L. Grüne and W. Semmler, Economic growth and the transition from non-renewable to renewable energy,, Environment and Development Economics, 19 (2014), 417.  doi: 10.2139/ssrn.2098707.  Google Scholar

[10]

A. Greiner, W. Semmler and T. Mette, An economic model of oil exploration and extraction,, Computational Economics, 40 (2012), 387.  doi: 10.1007/s10614-011-9272-0.  Google Scholar

[11]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the Maximum Principles for optimal control problems with state constraints,, SIAM Review, 37 (1995), 181.  doi: 10.1137/1037043.  Google Scholar

[12]

C. Heinzel and R. Winkler, Distorted time preferences and time-to-build in the transition to a low-carbon energy industry,, Environmental and Resource Economics, 49 (2011), 217.  doi: 10.1007/s10640-010-9431-0.  Google Scholar

[13]

M. Hestenes, Calculus of Variations and Optimal Control Theory,, John Wiley, (1966).   Google Scholar

[14]

M. Hoel and S. Kverndokk, Depletion of fossil fuels and the impacts of global warming,, Resource and Energy Economics, 18 (1996), 115.  doi: 10.1016/0928-7655(96)00005-X.  Google Scholar

[15]

H. Hotelling, The economics of exhaustible resources,, The Journal of Political Economy, 39 (1931), 137.  doi: 10.1086/254195.  Google Scholar

[16]

J. A. Krautkraemer, Optimal growth, resource amenities and the preservation of natural environments,, Review of Economic Studies, 52 (1985), 153.  doi: 10.2307/2297476.  Google Scholar

[17]

J. A. Krautkraemer, Nonrenewable resource scarcity,, Journal of Economic Literature, 36 (1998), 2065.   Google Scholar

[18]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253.  doi: 10.1007/BF00248267.  Google Scholar

[19]

H. Maurer, On the Minimum Principle for Optimal Control Problems with State Constraints,, Schriftenreihe des Rechenzentrums, (1979).   Google Scholar

[20]

H. Maurer and S. Pickenhain, Second-order sufficient conditions for control problems with mixed control-state constraints,, J. of Optimization Theory and Applications, 86 (1995), 649.  doi: 10.1007/BF02192163.  Google Scholar

[21]

S. Mittnik, M. Kato, D. Samaan and W. Semmler, Climate policies and structural change - employment and output effects of sustainable growth,, in The Macroeconomics of Climate Change, (2014).   Google Scholar

[22]

W. D. Nordhaus, A Question of Balance. Weighing the Options on Global Warming Policies,, Yale University Press, (2008).   Google Scholar

[23]

F. van der Ploeg and C. Withagen, Too much coal, too few oil,, Journal of Public Economics, 96 (2012), 62.   Google Scholar

[24]

F. van der Ploeg and C. Withagen, Growth, renewables and the optimal carbon tax,, International Economic Review, 55 (2014), 283.  doi: 10.1111/iere.12049.  Google Scholar

[25]

L. S. Pontryagin, V. G. Boltyanski, R. V. Gramkrelidze and E. F. Miscenko, The Mathematical Theory of Optimal Processes [in Russian],, Fitzmatgiz, (1964).   Google Scholar

[26]

S. Smulders and R. Gradus, Pollution abatement and long-term growth,, European Journal of Political Economy, 12 (1996), 505.  doi: 10.1016/S0176-2680(96)00013-4.  Google Scholar

[27]

A. Wächter, and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[28]

F. Wirl and Y. Yegorov, Renewable Energy - Models, Implications and Prospects,, in The Macroeconomics of Climate Change, (2014).   Google Scholar

show all references

References:
[1]

K. J. Arrow and M. Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy,, The John Hopkins Press, (1970).   Google Scholar

[2]

T. Brechet, C. Carmacho and V. M. Veliov, Model predictive control, the economy, and the issue of global warming,, Annals of Operations Research, 220 (2014), 25.  doi: 10.1007/s10479-011-0881-8.  Google Scholar

[3]

M. M. Byrne, Is growth a dirty word? pollution, abatement and endogenous growth,, Journal of Development Economics, 54 (1997), 261.  doi: 10.1016/S0304-3878(97)00043-6.  Google Scholar

[4]

C. W. Clark, Mathematical Bioeconomis: The Optimal Management of Renewable Resources,, John Wiley $&$ Sons, (1976).   Google Scholar

[5]

R. Fourer, D. M. Gay and B. W. Kernighan, AMPL: A Modeling Language for Mathematical Programming,, Duxbury Press, (1993).   Google Scholar

[6]

L. Göllmann, D. Kern and H. Maurer, Optimal control problems with delays in state and control and mixed control-state constraints,, Optimal Control Applications and Methods, 30 (2009), 341.  doi: 10.1002/oca.843.  Google Scholar

[7]

L. Göllmann and H. Maurer, Theory and applications of optimal control problems with multiple time-delays,, Special Issue on Computational Methods for Optimization and Control, 10 (2014), 413.   Google Scholar

[8]

A. Greiner, L. Grüne and W. Semmler, Growth and climate change: Threshold and multiple equilibria,, in J. Crespo Cuaresma, 12 (2010), 63.  doi: 10.1007/978-3-642-02132-9_4.  Google Scholar

[9]

A. Greiner, L. Grüne and W. Semmler, Economic growth and the transition from non-renewable to renewable energy,, Environment and Development Economics, 19 (2014), 417.  doi: 10.2139/ssrn.2098707.  Google Scholar

[10]

A. Greiner, W. Semmler and T. Mette, An economic model of oil exploration and extraction,, Computational Economics, 40 (2012), 387.  doi: 10.1007/s10614-011-9272-0.  Google Scholar

[11]

R. F. Hartl, S. P. Sethi and R. G. Vickson, A survey of the Maximum Principles for optimal control problems with state constraints,, SIAM Review, 37 (1995), 181.  doi: 10.1137/1037043.  Google Scholar

[12]

C. Heinzel and R. Winkler, Distorted time preferences and time-to-build in the transition to a low-carbon energy industry,, Environmental and Resource Economics, 49 (2011), 217.  doi: 10.1007/s10640-010-9431-0.  Google Scholar

[13]

M. Hestenes, Calculus of Variations and Optimal Control Theory,, John Wiley, (1966).   Google Scholar

[14]

M. Hoel and S. Kverndokk, Depletion of fossil fuels and the impacts of global warming,, Resource and Energy Economics, 18 (1996), 115.  doi: 10.1016/0928-7655(96)00005-X.  Google Scholar

[15]

H. Hotelling, The economics of exhaustible resources,, The Journal of Political Economy, 39 (1931), 137.  doi: 10.1086/254195.  Google Scholar

[16]

J. A. Krautkraemer, Optimal growth, resource amenities and the preservation of natural environments,, Review of Economic Studies, 52 (1985), 153.  doi: 10.2307/2297476.  Google Scholar

[17]

J. A. Krautkraemer, Nonrenewable resource scarcity,, Journal of Economic Literature, 36 (1998), 2065.   Google Scholar

[18]

K. Malanowski and H. Maurer, Sensitivity analysis for parametric control problems with control-state constraints,, Computational Optimization and Applications, 5 (1996), 253.  doi: 10.1007/BF00248267.  Google Scholar

[19]

H. Maurer, On the Minimum Principle for Optimal Control Problems with State Constraints,, Schriftenreihe des Rechenzentrums, (1979).   Google Scholar

[20]

H. Maurer and S. Pickenhain, Second-order sufficient conditions for control problems with mixed control-state constraints,, J. of Optimization Theory and Applications, 86 (1995), 649.  doi: 10.1007/BF02192163.  Google Scholar

[21]

S. Mittnik, M. Kato, D. Samaan and W. Semmler, Climate policies and structural change - employment and output effects of sustainable growth,, in The Macroeconomics of Climate Change, (2014).   Google Scholar

[22]

W. D. Nordhaus, A Question of Balance. Weighing the Options on Global Warming Policies,, Yale University Press, (2008).   Google Scholar

[23]

F. van der Ploeg and C. Withagen, Too much coal, too few oil,, Journal of Public Economics, 96 (2012), 62.   Google Scholar

[24]

F. van der Ploeg and C. Withagen, Growth, renewables and the optimal carbon tax,, International Economic Review, 55 (2014), 283.  doi: 10.1111/iere.12049.  Google Scholar

[25]

L. S. Pontryagin, V. G. Boltyanski, R. V. Gramkrelidze and E. F. Miscenko, The Mathematical Theory of Optimal Processes [in Russian],, Fitzmatgiz, (1964).   Google Scholar

[26]

S. Smulders and R. Gradus, Pollution abatement and long-term growth,, European Journal of Political Economy, 12 (1996), 505.  doi: 10.1016/S0176-2680(96)00013-4.  Google Scholar

[27]

A. Wächter, and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[28]

F. Wirl and Y. Yegorov, Renewable Energy - Models, Implications and Prospects,, in The Macroeconomics of Climate Change, (2014).   Google Scholar

[1]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[2]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[3]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[4]

Jian Xiong, Yingwu Chen, Zhongbao Zhou. Resilience analysis for project scheduling with renewable resource constraint and uncertain activity durations. Journal of Industrial & Management Optimization, 2016, 12 (2) : 719-737. doi: 10.3934/jimo.2016.12.719

[5]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[6]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[7]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[8]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[9]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[10]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[11]

Max Gunzburger, Sung-Dae Yang, Wenxiang Zhu. Analysis and discretization of an optimal control problem for the forced Fisher equation. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 569-587. doi: 10.3934/dcdsb.2007.8.569

[12]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[13]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[14]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[15]

John Leventides, Iraklis Kollias. Optimal control indicators for the assessment of the influence of government policy to business cycle shocks. Journal of Dynamics & Games, 2014, 1 (1) : 79-104. doi: 10.3934/jdg.2014.1.79

[16]

C.E.M. Pearce, J. Piantadosi, P.G. Howlett. On an optimal control policy for stormwater management in two connected dams. Journal of Industrial & Management Optimization, 2007, 3 (2) : 313-320. doi: 10.3934/jimo.2007.3.313

[17]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[18]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[19]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[20]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]