-
Previous Article
When are minimizing controls also minimizing relaxed controls?
- DCDS Home
- This Issue
-
Next Article
Asymptotic problems in optimal control with a vanishing Lagrangian and unbounded data
Adaptive time--mesh refinement in optimal control problems with state constraints
1. | SYSTEC-ISR, Faculdade de Engenharia, Universidade do Porto, 4200-465, Porto, Portugal |
2. | ISR-Porto, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal |
References:
[1] |
SIAM, 2001. |
[2] |
Journal of Computational and Applied Mathematics, 125 (2000), 147-158.
doi: 10.1016/S0377-0427(00)00465-9. |
[3] |
Optimal Control Applications and Methods, 19 (1998), 1-21.
doi: 10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q. |
[4] |
Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761. |
[5] |
Department of Electrical Engineering, Imperial College London, London, UK, 2010. Google Scholar |
[6] |
Systems and Control Letters, 42 (2001), 127-143.
doi: 10.1016/S0167-6911(00)00084-0. |
[7] |
Journal of Optimization Theory and Applications, 22 (2015), p30.
doi: 10.1007/s10957-015-0704-1. |
[8] |
Journal of Mathematical Analysis and Applications, 399 (2013), 27-37.
doi: 10.1016/j.jmaa.2012.09.049. |
[9] |
IEEE Control Systems, 15 (1995), 20-36.
doi: 10.1109/37.476384. |
[10] |
Procedia Technology, 17 (2014), 415-422.
doi: 10.1016/j.protcy.2014.10.249. |
[11] |
Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011), 559-575.
doi: 10.3934/dcds.2011.29.559. |
[12] |
Modeling paradigms and analysis of disease transmission models, 75 (2010), 67-81. Google Scholar |
[13] |
Technical report, Faculdade de Engenharia, Universidade do Porto, 2013. Google Scholar |
[14] |
AIP Conference Proceedings, 1558 (2013), 590-593, Proceding of the ICNAAM 2013 - 11th International Conference on Numerical Analysis and Applied Mathematics.
doi: 10.1063/1.4825560. |
[15] |
Procedia Technology, 17 (2014), 178-185.
doi: 10.1016/j.protcy.2014.10.226. |
[16] |
M. A. Patterson, W. W. Hager and A. V. Rao, A ph mesh refinement method for optimal control,, Optimal Control Applications and Methods, (). Google Scholar |
[17] |
Springer, 2000. Google Scholar |
[18] |
Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[19] |
Journal of Guidance, Control, and Dynamics, 34 (2011), 271-277.
doi: 10.2514/1.45852. |
show all references
References:
[1] |
SIAM, 2001. |
[2] |
Journal of Computational and Applied Mathematics, 125 (2000), 147-158.
doi: 10.1016/S0377-0427(00)00465-9. |
[3] |
Optimal Control Applications and Methods, 19 (1998), 1-21.
doi: 10.1002/(SICI)1099-1514(199801/02)19:1<1::AID-OCA616>3.0.CO;2-Q. |
[4] |
Mathematical Biosciences and Engineering, 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761. |
[5] |
Department of Electrical Engineering, Imperial College London, London, UK, 2010. Google Scholar |
[6] |
Systems and Control Letters, 42 (2001), 127-143.
doi: 10.1016/S0167-6911(00)00084-0. |
[7] |
Journal of Optimization Theory and Applications, 22 (2015), p30.
doi: 10.1007/s10957-015-0704-1. |
[8] |
Journal of Mathematical Analysis and Applications, 399 (2013), 27-37.
doi: 10.1016/j.jmaa.2012.09.049. |
[9] |
IEEE Control Systems, 15 (1995), 20-36.
doi: 10.1109/37.476384. |
[10] |
Procedia Technology, 17 (2014), 415-422.
doi: 10.1016/j.protcy.2014.10.249. |
[11] |
Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011), 559-575.
doi: 10.3934/dcds.2011.29.559. |
[12] |
Modeling paradigms and analysis of disease transmission models, 75 (2010), 67-81. Google Scholar |
[13] |
Technical report, Faculdade de Engenharia, Universidade do Porto, 2013. Google Scholar |
[14] |
AIP Conference Proceedings, 1558 (2013), 590-593, Proceding of the ICNAAM 2013 - 11th International Conference on Numerical Analysis and Applied Mathematics.
doi: 10.1063/1.4825560. |
[15] |
Procedia Technology, 17 (2014), 178-185.
doi: 10.1016/j.protcy.2014.10.226. |
[16] |
M. A. Patterson, W. W. Hager and A. V. Rao, A ph mesh refinement method for optimal control,, Optimal Control Applications and Methods, (). Google Scholar |
[17] |
Springer, 2000. Google Scholar |
[18] |
Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y. |
[19] |
Journal of Guidance, Control, and Dynamics, 34 (2011), 271-277.
doi: 10.2514/1.45852. |
[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[3] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[4] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[5] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[6] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[7] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[8] |
Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021088 |
[9] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[10] |
Tengteng Yu, Xin-Wei Liu, Yu-Hong Dai, Jie Sun. Variable metric proximal stochastic variance reduced gradient methods for nonconvex nonsmooth optimization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021084 |
[11] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[12] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[13] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[14] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[15] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[16] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[17] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[18] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[19] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[20] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]