Citation: |
[1] |
A. Agrachev, G. Stefani and P. L. Zezza, A Hamiltonian approach to strong minima in optimal control, in Differential Geometry and Control, (G. Ferreyra, et al., Eds.), American Mathematical Society, (1999), 11-22. |
[2] |
A. Agrachev, G. Stefani and P. L. Zezza, Strong optimality for a bang-bang trajectory, SIAM J. Control and Optimization, 41 (2002), 991-1014.doi: 10.1137/S036301290138866X. |
[3] |
M. S. Aronna, J. F. Bonnans, A. V. Dmitruk and P. A. Lotito, Quadratic conditions for bang-singular extremals, Numerical Linear Algebra, Control and Optimization, 2 (2012), 511-546.doi: 10.3934/naco.2012.2.511. |
[4] |
V. G. Boltyansky, Sufficient conditions for optimality and the justification of the dynamic programming method, SIAM J. Control, 4 (1966), 326-361.doi: 10.1137/0304027. |
[5] |
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer Verlag, Series: Mathematics and Applications, Vol. 40, 2003. |
[6] |
U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Mathématiques & Applications, 43, Springer Verlag, Paris, 2004. |
[7] |
A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, Springfield, Mo, 2007. |
[8] |
A. Dmitruk, Jacobi type conditions for singular extremals, Control and Cybernetics, 37 (2008), 285-306. |
[9] |
U. Felgenhauer, On stability of bang-bang type controls, SIAM J. Control and Optimization, 41 (2003), 1843-1867.doi: 10.1137/S0363012901399271. |
[10] |
U. Felgenhauer, Lipschitz stability of broken extremals in bang-bang control problems, in: Large-Scale Scientific Computing (Sozopol 2007), (I. Lirkov et al., Eds.), Lecture Notes in Computer Science, vol. 4818, Springer (2008), 317-325.doi: 10.1007/978-3-540-78827-0_35. |
[11] |
U. Felgenhauer, L. Poggiolini and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour, Control and Cybernetics, 38 (2009), 1305-1325. |
[12] |
H. Gardner-Moyer, Sufficient conditions for a strong minimum in singular control problems, SIAM J. Control, 11 (1973), 620-636.doi: 10.1137/0311048. |
[13] |
M. Kimmel and A. Swierniak, An optimal control problem related to leukemia chemotherapy, Scientific Bulletins of the Silesian Technical University, 65 (1983), 120-130. |
[14] |
U. Ledzewicz, K. Bratton and H. Schättler, A $3$-compartment model for chemotherapy of heterogeneous tumor populations, Acta Applicandae Mathematicae, 135 (2015), 191-207.doi: 10.1007/s10440-014-9952-6. |
[15] |
U. Ledzewicz, H. Maurer and H. Schättler, Sufficient conditions for strong local optimality in optimal control problem with $L_{2}$-type objectives and control constraints, Discrete and Continuous Dynamical Systems, Series B, 19 (2014), 2657-2679.doi: 10.3934/dcdsb.2014.19.2657. |
[16] |
U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), 183-206.doi: 10.1142/S0218339002000597. |
[17] |
U. Ledzewicz, H. Schättler, M. Reisi Gahrooi and S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering (MBE), 10 (2013), 803-819.doi: 10.3934/mbe.2013.10.803. |
[18] |
H. Maurer and N. Osmolovskii, Quadratic sufficient optimality conditions for bang-bang control problems, Control and Cybernetics, 33 (2003), 555-584. |
[19] |
J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals, J. of Mathematical Analysis and Applications, 269 (2002), 98-128.doi: 10.1016/S0022-247X(02)00008-2. |
[20] |
N. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM, Philadelphia, USA, 2012.doi: 10.1137/1.9781611972368. |
[21] |
B. Piccoli and H. Sussmann, Regular synthesis and sufficient conditions for optimality, SIAM J. on Control and Optimization, 39 (2000), 359-410.doi: 10.1137/S0363012999322031. |
[22] |
L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem, SIAM J. Control and Optimization, 49 (2011), 140-161.doi: 10.1137/090771405. |
[23] |
L. Poggiolini and G. Stefani, Sufficient optimality conditions for a bang-bang trajectory, in Proceedings of the 45th IEEE Conference on Decision and Control, (2006), 6624-6629.doi: 10.1109/CDC.2006.376760. |
[24] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964. |
[25] |
A. Sarychev, Morse index and sufficient optimality conditions for bang-bang Pontryagin extremals, in: System Modeling and Optimization, Lecture Notes in Control and Information Sciences, 180 (1992), 440-448.doi: 10.1007/BFb0113311. |
[26] |
A. Sarychev, First and second order sufficient optimality conditions for bang-bang controls, SIAM J. on Control and Optimization, 35 (1997), 315-340.doi: 10.1137/S0363012993246191. |
[27] |
H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer Verlag, 2012.doi: 10.1007/978-1-4614-3834-2. |
[28] |
H. E. Skipper, On mathematical modeling of critical variables in cancer treatment (goals: better understanding of the past and better planning in the future), Bulletin of Mathematical Biology, 48 (1986), 253-278.doi: 10.1007/BF02459681. |
[29] |
H. J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the $C^{\infty}$ nonsingular case, SIAM J. Control Optimization, 25 (1987), 433-465.doi: 10.1137/0325025. |
[30] |
H. J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case, SIAM J. Control Optimization, 25 (1987), 868-904.doi: 10.1137/0325048. |
[31] |
H. J. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. Control Optimization, 25 (1987), 1145-1162.doi: 10.1137/0325062. |
[32] |
A. Swierniak, Optimal treatment protocols in leukemia - modelling the proliferation cycle, IMACS Ann. Comput. Appl. Math., Baltzer, Basel, 5 (1989), 51-53. |
[33] |
A. Swierniak, Cell cycle as an object of control, J. of Biological Systems, 3 (1995), 41-54.doi: 10.1142/S0218339095000058. |
[34] |
A. Swierniak, U. Ledzewicz and H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy, Int. J. Applied Mathematics and Computer Science, 13 (2003), 357-368. |
[35] |
A. Swierniak, A. Polanski and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell Proliferation, 29 (1996), 117-139.doi: 10.1046/j.1365-2184.1996.00995.x. |
[36] |
T. E. Wheldon, Mathematical Models in Cancer Research, Boston-Philadelphia: Hilger Publishing, 1988. |