• Previous Article
    Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains
  • DCDS Home
  • This Issue
  • Next Article
    The singular limit problem in a phase separation model with different diffusion rates $^*$
January  2015, 35(1): 467-482. doi: 10.3934/dcds.2015.35.467

On the quasi-periodic solutions of generalized Kaup systems

1. 

Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa

Received  November 2013 Revised  May 2014 Published  August 2014

In this paper we analyze the behavior of small amplitude solutions of the variant of the classical Kap system given by \[ \partial_t u = \partial_x v - 2 \partial_x(v^3), \quad \partial_t v = \partial_x u - \frac 1 3 \partial_{xxx} u. \] It is proved that the above equation admits small-amplitude solutions that are quasiperiodic in time and that correspond to finite dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof relies on the Hamiltonian formulation of the problem, the study of its Birkhoff normal form and an infinite dimensional KAM theorem. This is the abstract of your paper and it should not exceed.
Citation: Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467
References:
[1]

D. Bambusi, Lyapunov center theorem for some nonlinear PDE's: A simple proof,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 823.

[2]

D. Bambusi and S. Paleari, Normal form and exponential stability for some nonlinear string equations,, Z. Angew. Math. Phys., 52 (2001), 1033. doi: 10.1007/PL00001582.

[3]

M. Berti and P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities,, Comm. Math. Phys., 243 (2003), 315. doi: 10.1007/s00220-003-0972-8.

[4]

M. Berti and P. Bolle, Multiplicity of periodic solutions of nonlinear wave equations,, Nonlinear Anal., 56 (2004), 1011. doi: 10.1016/j.na.2003.11.001.

[5]

J. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory,, J. Nonlinear Sci., 12 (2002), 283. doi: 10.1007/s00332-002-0466-4.

[6]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension,, Geom. Funct. Anal., 5 (1995), 629. doi: 10.1007/BF01902055.

[7]

C. Chierchia and J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions,, Comm. Math. Phys., 211 (2000), 497. doi: 10.1007/s002200050824.

[8]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 46 (1993), 1409. doi: 10.1002/cpa.3160461102.

[9]

G. El, R. Grimshaw and M. Pavlov, Integrable shallow-water equations and undular bores,, Stud. Appl. Math., 106 (2001), 157. doi: 10.1111/1467-9590.00163.

[10]

G. Gentile and V. Mastropietro, Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method,, J. Math. Pures Appl., 83 (2004), 1019. doi: 10.1016/j.matpur.2004.01.007.

[11]

A. Kamchatnov, R. Kraenkel and B. Umarov, Asymptotic soliton train solutions of Kaup-Boussinesq equations,, Wave Motion, 38 (2003), 355. doi: 10.1016/S0165-2125(03)00062-3.

[12]

D. Kaup, A higher-order water-wave equation and the method for solving it,, Prog. Theor. Phys., 54 (1975), 396. doi: 10.1143/PTP.54.396.

[13]

S. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum,, Funct. Anal. Appl., 21 (1987), 22.

[14]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, Ann. of Math., 143 (1996), 149. doi: 10.2307/2118656.

[15]

V. Matveev and M. Yavor, Solutions presque périodiques et à $N$-solitons de l'équation hydrodynamique non linéaire de Kaup,, Ann. Inst. H. Poincaré Sect. A (N.S.), 31 (1979), 25.

[16]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119.

[17]

C. Valls, The Boussinesq system: Dynamics on the center manifold,, Comm. Pure Appl. Anal., 4 (2005), 839. doi: 10.3934/cpaa.2005.4.839.

[18]

G. Whitham, Linear and Nonlinear Waves,, Wiley-Interscience, (1974).

show all references

References:
[1]

D. Bambusi, Lyapunov center theorem for some nonlinear PDE's: A simple proof,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 29 (2000), 823.

[2]

D. Bambusi and S. Paleari, Normal form and exponential stability for some nonlinear string equations,, Z. Angew. Math. Phys., 52 (2001), 1033. doi: 10.1007/PL00001582.

[3]

M. Berti and P. Bolle, Periodic solutions of nonlinear wave equations with general nonlinearities,, Comm. Math. Phys., 243 (2003), 315. doi: 10.1007/s00220-003-0972-8.

[4]

M. Berti and P. Bolle, Multiplicity of periodic solutions of nonlinear wave equations,, Nonlinear Anal., 56 (2004), 1011. doi: 10.1016/j.na.2003.11.001.

[5]

J. Bona, M. Chen and J. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory,, J. Nonlinear Sci., 12 (2002), 283. doi: 10.1007/s00332-002-0466-4.

[6]

J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension,, Geom. Funct. Anal., 5 (1995), 629. doi: 10.1007/BF01902055.

[7]

C. Chierchia and J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions,, Comm. Math. Phys., 211 (2000), 497. doi: 10.1007/s002200050824.

[8]

W. Craig and C. Wayne, Newton's method and periodic solutions of nonlinear wave equations,, Comm. Pure Appl. Math., 46 (1993), 1409. doi: 10.1002/cpa.3160461102.

[9]

G. El, R. Grimshaw and M. Pavlov, Integrable shallow-water equations and undular bores,, Stud. Appl. Math., 106 (2001), 157. doi: 10.1111/1467-9590.00163.

[10]

G. Gentile and V. Mastropietro, Construction of periodic solutions of nonlinear wave equations with Dirichlet boundary conditions by the Lindstedt series method,, J. Math. Pures Appl., 83 (2004), 1019. doi: 10.1016/j.matpur.2004.01.007.

[11]

A. Kamchatnov, R. Kraenkel and B. Umarov, Asymptotic soliton train solutions of Kaup-Boussinesq equations,, Wave Motion, 38 (2003), 355. doi: 10.1016/S0165-2125(03)00062-3.

[12]

D. Kaup, A higher-order water-wave equation and the method for solving it,, Prog. Theor. Phys., 54 (1975), 396. doi: 10.1143/PTP.54.396.

[13]

S. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum,, Funct. Anal. Appl., 21 (1987), 22.

[14]

S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, Ann. of Math., 143 (1996), 149. doi: 10.2307/2118656.

[15]

V. Matveev and M. Yavor, Solutions presque périodiques et à $N$-solitons de l'équation hydrodynamique non linéaire de Kaup,, Ann. Inst. H. Poincaré Sect. A (N.S.), 31 (1979), 25.

[16]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 23 (1996), 119.

[17]

C. Valls, The Boussinesq system: Dynamics on the center manifold,, Comm. Pure Appl. Anal., 4 (2005), 839. doi: 10.3934/cpaa.2005.4.839.

[18]

G. Whitham, Linear and Nonlinear Waves,, Wiley-Interscience, (1974).

[1]

Marcel Oliver, Sergiy Vasylkevych. Hamiltonian formalism for models of rotating shallow water in semigeostrophic scaling. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 827-846. doi: 10.3934/dcds.2011.31.827

[2]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[3]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[4]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[5]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[6]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[7]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[8]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[9]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[10]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[11]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[12]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[13]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[14]

Tony Lyons. Geophysical internal equatorial waves of extreme form. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4471-4486. doi: 10.3934/dcds.2019183

[15]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[16]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[17]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[18]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[19]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[20]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]