October  2015, 35(10): 4735-4741. doi: 10.3934/dcds.2015.35.4735

Topological properties of sectional-Anosov flows

1. 

Departamento de Matemática, Universidade Federal de Viçosa, Viçosa-MG, Brazil, Brazil

2. 

Departamento de Matemática, Universidade Federal do Rio de Janeiro, RJ, Brazil

Received  July 2014 Revised  February 2015 Published  April 2015

We study sectional-Anosov flows on compact $3$-manifolds. First we prove that every periodic orbits represents an infinite order element of the fundamental group outside the strong stable manifolds of the singularities. Next, in the transitive case, we prove that the first Betti number of the manifold is positive, that the number of singularities is given by the Euler characteristic and that every boundary's connected component has nonpositive Euler characteristic. Moreover, there is one component with negative characteristic if and only if the flow has singularities. These results will be used to discuss the existence of transitive sectional-Anosov flows on specific compact 3-manifolds with boundary.
Citation: Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735
References:
[1]

Mosc. Math. J., 6 (2006), 265-297, 406.  Google Scholar

[2]

in Low-Dimensional Topology (San Francisco, Calif., 1981), Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983, 1-60. doi: 10.1090/conm/020/718132.  Google Scholar

[3]

C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883-888. doi: 10.1016/S0764-4442(97)80131-0.  Google Scholar

[4]

Nonlinearity, 9 (1996), 1173-1190. doi: 10.1088/0951-7715/9/5/006.  Google Scholar

[5]

Topology Appl., 114 (2001), 1-25. doi: 10.1016/S0166-8641(00)00034-1.  Google Scholar

[6]

Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5292-4.  Google Scholar

[7]

in Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., 819, Springer, Berlin, 1980, 158-174.  Google Scholar

[8]

Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59-72.  Google Scholar

[9]

Vieweg, Braunschweig, 1986. doi: 10.1007/978-3-322-90115-6.  Google Scholar

[10]

Ann. of Math. Studies, No. 86, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1976.  Google Scholar

[11]

Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[12]

Ergod. Th. Dynam. Sys., 28 (2008), 1587-1597. doi: 10.1017/S0143385707000995.  Google Scholar

[13]

Based on notes by David W. Weaver The University Press of Virginia, Charlottesville, Va., 1965.  Google Scholar

[14]

Monatsh. Math., 159 (2010), 253-260. doi: 10.1007/s00605-008-0078-7.  Google Scholar

[15]

Proc. Amer. Math. Soc., 136 (2008), 4349-4354. doi: 10.1090/S0002-9939-08-09409-4.  Google Scholar

[16]

J. Dyn. Control Syst., 13 (2007), 15-24. doi: 10.1007/s10883-006-9000-6.  Google Scholar

[17]

Proc. Amer. Math. Soc., 127 (1999), 3393-3401. doi: 10.1090/S0002-9939-99-04936-9.  Google Scholar

[18]

Trudy Mosk. Mat. Obbsh., 14 (1965), 248-278 (AMS, translation 1967).  Google Scholar

[19]

Topology, 11 (1972), 147-150. doi: 10.1016/0040-9383(72)90002-X.  Google Scholar

[20]

Tese (doutorado) - UFRJ/ IM/ Programa de Pós- Graduação em Matemática, 2011. Google Scholar

[21]

J. Differential Geom., 83 (2009), 189-212.  Google Scholar

[22]

Bull. Braz. Math. Soc. (N.S.), 42 (2011), 439-454. doi: 10.1007/s00574-011-0024-5.  Google Scholar

[23]

Ergodic Theory Dynam. Systems, 26 (2006), 923-936. doi: 10.1017/S0143385705000581.  Google Scholar

show all references

References:
[1]

Mosc. Math. J., 6 (2006), 265-297, 406.  Google Scholar

[2]

in Low-Dimensional Topology (San Francisco, Calif., 1981), Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983, 1-60. doi: 10.1090/conm/020/718132.  Google Scholar

[3]

C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 883-888. doi: 10.1016/S0764-4442(97)80131-0.  Google Scholar

[4]

Nonlinearity, 9 (1996), 1173-1190. doi: 10.1088/0951-7715/9/5/006.  Google Scholar

[5]

Topology Appl., 114 (2001), 1-25. doi: 10.1016/S0166-8641(00)00034-1.  Google Scholar

[6]

Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5292-4.  Google Scholar

[7]

in Global Theory of Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), Lecture Notes in Math., 819, Springer, Berlin, 1980, 158-174.  Google Scholar

[8]

Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59-72.  Google Scholar

[9]

Vieweg, Braunschweig, 1986. doi: 10.1007/978-3-322-90115-6.  Google Scholar

[10]

Ann. of Math. Studies, No. 86, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1976.  Google Scholar

[11]

Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[12]

Ergod. Th. Dynam. Sys., 28 (2008), 1587-1597. doi: 10.1017/S0143385707000995.  Google Scholar

[13]

Based on notes by David W. Weaver The University Press of Virginia, Charlottesville, Va., 1965.  Google Scholar

[14]

Monatsh. Math., 159 (2010), 253-260. doi: 10.1007/s00605-008-0078-7.  Google Scholar

[15]

Proc. Amer. Math. Soc., 136 (2008), 4349-4354. doi: 10.1090/S0002-9939-08-09409-4.  Google Scholar

[16]

J. Dyn. Control Syst., 13 (2007), 15-24. doi: 10.1007/s10883-006-9000-6.  Google Scholar

[17]

Proc. Amer. Math. Soc., 127 (1999), 3393-3401. doi: 10.1090/S0002-9939-99-04936-9.  Google Scholar

[18]

Trudy Mosk. Mat. Obbsh., 14 (1965), 248-278 (AMS, translation 1967).  Google Scholar

[19]

Topology, 11 (1972), 147-150. doi: 10.1016/0040-9383(72)90002-X.  Google Scholar

[20]

Tese (doutorado) - UFRJ/ IM/ Programa de Pós- Graduação em Matemática, 2011. Google Scholar

[21]

J. Differential Geom., 83 (2009), 189-212.  Google Scholar

[22]

Bull. Braz. Math. Soc. (N.S.), 42 (2011), 439-454. doi: 10.1007/s00574-011-0024-5.  Google Scholar

[23]

Ergodic Theory Dynam. Systems, 26 (2006), 923-936. doi: 10.1017/S0143385705000581.  Google Scholar

[1]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[2]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[3]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[4]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[5]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[6]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[7]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[8]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[9]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[10]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[11]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[12]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[13]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[14]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[15]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[16]

Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038

[17]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[18]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[19]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (1)

[Back to Top]