-
Previous Article
Rigorous numerics for nonlinear operators with tridiagonal dominant linear part
- DCDS Home
- This Issue
-
Next Article
Topological properties of sectional-Anosov flows
Transitive sofic spacing shifts
1. | Department of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia |
2. | Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków |
3. | Department of Mathematics and Statistics, La Trobe University, Bundoora 3086, Australia |
References:
[1] |
D. Ahmadi and M. Dabbaghian, Characterization of spacing shifts with positive topological entropy,, Acta Math. Univ. Comenian. (N.S.), 81 (2012), 221.
|
[2] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances,, North-Holland Mathematical Library, (1994).
|
[3] |
J. Banks, Regular Periodic Decompositions for Topologically Transitive maps,, Ergodic Theory Dynam. Systems 17 (1997), 17 (1997), 505.
doi: 10.1017/S0143385797069885. |
[4] |
J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley and B. Trotta, Dynamics of spacing shifts,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 4207.
doi: 10.3934/dcds.2013.33.4207. |
[5] |
D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition,, John Wiley & Sons, (2004).
|
[6] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).
|
[7] |
S. Ginsburg, Algebraic and automata-theoretic properties of formal languages,, North-Holland/American Elsevier, (1975).
|
[8] |
M. Harrison, Introduction to Formal Language Theory,, Addison-Wesley, (1978).
|
[9] |
D. Kwietniak, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts,, Discrete Contin. Dyn. Syst, 33 (2013), 2451.
doi: 10.3934/dcds.2013.33.2451. |
[10] |
K. Lau and A. Zame, On weak mixing of cascades,, Math. Systems Theory, 6 (1973), 307.
doi: 10.1007/BF01740722. |
[11] |
D. Lind and B. Marcus, Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).
doi: 10.1017/CBO9780511626302. |
[12] |
M. Lothaire, Algebraic Combinatorics on Words,, Cambridge University Press, (1997).
doi: 10.1017/CBO9780511566097. |
show all references
References:
[1] |
D. Ahmadi and M. Dabbaghian, Characterization of spacing shifts with positive topological entropy,, Acta Math. Univ. Comenian. (N.S.), 81 (2012), 221.
|
[2] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances,, North-Holland Mathematical Library, (1994).
|
[3] |
J. Banks, Regular Periodic Decompositions for Topologically Transitive maps,, Ergodic Theory Dynam. Systems 17 (1997), 17 (1997), 505.
doi: 10.1017/S0143385797069885. |
[4] |
J. Banks, T. T. D. Nguyen, P. Oprocha, B. Stanley and B. Trotta, Dynamics of spacing shifts,, Discrete Contin. Dyn. Syst. 33 (2013), 33 (2013), 4207.
doi: 10.3934/dcds.2013.33.4207. |
[5] |
D. S. Dummit and R. M. Foote, Abstract Algebra, Third edition,, John Wiley & Sons, (2004).
|
[6] |
H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981).
|
[7] |
S. Ginsburg, Algebraic and automata-theoretic properties of formal languages,, North-Holland/American Elsevier, (1975).
|
[8] |
M. Harrison, Introduction to Formal Language Theory,, Addison-Wesley, (1978).
|
[9] |
D. Kwietniak, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts,, Discrete Contin. Dyn. Syst, 33 (2013), 2451.
doi: 10.3934/dcds.2013.33.2451. |
[10] |
K. Lau and A. Zame, On weak mixing of cascades,, Math. Systems Theory, 6 (1973), 307.
doi: 10.1007/BF01740722. |
[11] |
D. Lind and B. Marcus, Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995).
doi: 10.1017/CBO9780511626302. |
[12] |
M. Lothaire, Algebraic Combinatorics on Words,, Cambridge University Press, (1997).
doi: 10.1017/CBO9780511566097. |
[1] |
John Banks, Thi T. D. Nguyen, Piotr Oprocha, Brett Stanley, Belinda Trotta. Dynamics of spacing shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4207-4232. doi: 10.3934/dcds.2013.33.4207 |
[2] |
Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451 |
[3] |
Marcelo Sobottka. Topological quasi-group shifts. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77 |
[4] |
Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459 |
[5] |
Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477 |
[6] |
Wolfgang Krieger, Kengo Matsumoto. Markov-Dyck shifts, neutral periodic points and topological conjugacy. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 1-18. doi: 10.3934/dcds.2019001 |
[7] |
Kengo Matsumoto. Continuous orbit equivalence of topological Markov shifts and KMS states on Cuntz–Krieger algebras. Discrete & Continuous Dynamical Systems - A, 2020, 40 (10) : 5897-5909. doi: 10.3934/dcds.2020251 |
[8] |
Kengo Matsumoto. K-groups of the full group actions on one-sided topological Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3753-3765. doi: 10.3934/dcds.2013.33.3753 |
[9] |
John Banks, Brett Stanley. A note on equivalent definitions of topological transitivity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1293-1296. doi: 10.3934/dcds.2013.33.1293 |
[10] |
Philipp Gohlke, Dan Rust, Timo Spindeler. Shifts of finite type and random substitutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5085-5103. doi: 10.3934/dcds.2019206 |
[11] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[12] |
Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323 |
[13] |
Filomena Garcia, Joana Resende. Conformity-based behavior and the dynamics of price competition: A new rationale for fashion shifts. Journal of Dynamics & Games, 2016, 3 (2) : 153-167. doi: 10.3934/jdg.2016008 |
[14] |
Yair Daon. Bernoullicity of equilibrium measures on countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4003-4015. doi: 10.3934/dcds.2013.33.4003 |
[15] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131 |
[16] |
Kengo Matsumoto. On the Markov-Dyck shifts of vertex type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 403-422. doi: 10.3934/dcds.2016.36.403 |
[17] |
Kevin McGoff, Ronnie Pavlov. Random $\mathbb{Z}^d$-shifts of finite type. Journal of Modern Dynamics, 2016, 10: 287-330. doi: 10.3934/jmd.2016.10.287 |
[18] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593 |
[19] |
Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 |
[20] |
Kazuhiro Kawamura. Mean dimension of shifts of finite type and of generalized inverse limits. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 4767-4775. doi: 10.3934/dcds.2020200 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]