October  2015, 35(10): 4765-4789. doi: 10.3934/dcds.2015.35.4765

Rigorous numerics for nonlinear operators with tridiagonal dominant linear part

1. 

CMLA, ENS Cachan & CNRS, 61 avenue du Président Wilson, 94230 Cachan, France, France

2. 

Département de Mathématiques et de Statistique, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V0A6, Canada

Received  June 2014 Revised  January 2015 Published  April 2015

We present a method designed for computing solutions of infinite dimensional nonlinear operators $f(x)=0$ with a tridiagonal dominant linear part. We recast the operator equation into an equivalent Newton-like equation $x=T(x)=x-Af(x)$, where $A$ is an approximate inverse of the derivative $Df(\overline{x})$ at an approximate solution $\overline{x}$. We present rigorous computer-assisted calculations showing that $T$ is a contraction near $\overline{x}$, thus yielding the existence of a solution. Since $Df(\overline{x})$ does not have an asymptotically diagonal dominant structure, the computation of $A$ is not straightforward. This paper provides ideas for computing $A$, and proposes a new rigorous method for proving existence of solutions of nonlinear operators with tridiagonal dominant linear part.
Citation: Maxime Breden, Laurent Desvillettes, Jean-Philippe Lessard. Rigorous numerics for nonlinear operators with tridiagonal dominant linear part. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4765-4789. doi: 10.3934/dcds.2015.35.4765
References:
[1]

Discrete Contin. Dyn. Syst., 13 (2005), 901-920. doi: 10.3934/dcds.2005.13.901.  Google Scholar

[2]

Second edition, Dover Publications Inc., Mineola, NY, 2001.  Google Scholar

[3]

Acta Appl. Math., 128 (2013), 113-152. doi: 10.1007/s10440-013-9823-6.  Google Scholar

[4]

M. Breden, L. Desvillettes and J.-P. Lessard, MATLAB codes to perform the proofs,, , ().   Google Scholar

[5]

SIAM J. Appl. Dyn. Syst., 12 (2013), 204-245. doi: 10.1137/120873960.  Google Scholar

[6]

With the assistance of Bernadette Miara and Jean-Marie Thomas, Translated from the French by A. Buttigieg, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989.  Google Scholar

[7]

SIAM J. Appl. Dyn. Syst., 3 (2004), 117-160 (electronic). doi: 10.1137/030600210.  Google Scholar

[8]

J. Differential Equations, 249 (2010), 2237-2268. doi: 10.1016/j.jde.2010.07.002.  Google Scholar

[9]

SIAM J. Numer. Anal., 51 (2013), 2063-2087. doi: 10.1137/110836651.  Google Scholar

[10]

Japan J. Indust. Appl. Math., 22 (2005), 57-75. doi: 10.1007/BF03167476.  Google Scholar

[11]

To appear in Math. Comp., 2015. Google Scholar

[12]

J. Differential Equations, 252 (2012), 3093-3115. doi: 10.1016/j.jde.2011.11.020.  Google Scholar

[13]

Second edition, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981.  Google Scholar

[14]

J. Comput. Appl. Math., 206 (2007), 986-1006. doi: 10.1016/j.cam.2006.09.016.  Google Scholar

[15]

ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-University of Maryland, Baltimore County.  Google Scholar

[16]

J.-P. Lessard, J. D. Mireles James and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach,, in preparation., ().   Google Scholar

[17]

in Developments in Reliable Computing (ed. Tibor Csendes), Kluwer Academic Publishers, Dordrecht, 1999, 77-104. Available from: http://www.ti3.tu-harburg.de/rump/. doi: 10.1007/978-94-017-1247-7_7.  Google Scholar

[18]

Found. Comput. Math., 1 (2001), 255-288. doi: 10.1007/s002080010010.  Google Scholar

show all references

References:
[1]

Discrete Contin. Dyn. Syst., 13 (2005), 901-920. doi: 10.3934/dcds.2005.13.901.  Google Scholar

[2]

Second edition, Dover Publications Inc., Mineola, NY, 2001.  Google Scholar

[3]

Acta Appl. Math., 128 (2013), 113-152. doi: 10.1007/s10440-013-9823-6.  Google Scholar

[4]

M. Breden, L. Desvillettes and J.-P. Lessard, MATLAB codes to perform the proofs,, , ().   Google Scholar

[5]

SIAM J. Appl. Dyn. Syst., 12 (2013), 204-245. doi: 10.1137/120873960.  Google Scholar

[6]

With the assistance of Bernadette Miara and Jean-Marie Thomas, Translated from the French by A. Buttigieg, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1989.  Google Scholar

[7]

SIAM J. Appl. Dyn. Syst., 3 (2004), 117-160 (electronic). doi: 10.1137/030600210.  Google Scholar

[8]

J. Differential Equations, 249 (2010), 2237-2268. doi: 10.1016/j.jde.2010.07.002.  Google Scholar

[9]

SIAM J. Numer. Anal., 51 (2013), 2063-2087. doi: 10.1137/110836651.  Google Scholar

[10]

Japan J. Indust. Appl. Math., 22 (2005), 57-75. doi: 10.1007/BF03167476.  Google Scholar

[11]

To appear in Math. Comp., 2015. Google Scholar

[12]

J. Differential Equations, 252 (2012), 3093-3115. doi: 10.1016/j.jde.2011.11.020.  Google Scholar

[13]

Second edition, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981.  Google Scholar

[14]

J. Comput. Appl. Math., 206 (2007), 986-1006. doi: 10.1016/j.cam.2006.09.016.  Google Scholar

[15]

ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-University of Maryland, Baltimore County.  Google Scholar

[16]

J.-P. Lessard, J. D. Mireles James and J. Ransford, Automatic differentiation for Fourier series and the radii polynomial approach,, in preparation., ().   Google Scholar

[17]

in Developments in Reliable Computing (ed. Tibor Csendes), Kluwer Academic Publishers, Dordrecht, 1999, 77-104. Available from: http://www.ti3.tu-harburg.de/rump/. doi: 10.1007/978-94-017-1247-7_7.  Google Scholar

[18]

Found. Comput. Math., 1 (2001), 255-288. doi: 10.1007/s002080010010.  Google Scholar

[1]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[2]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[3]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[4]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[5]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[6]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[7]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[8]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[9]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[10]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[11]

Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021009

[12]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[13]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[14]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[15]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[16]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[17]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (1)

[Back to Top]