\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lorentz-Morrey regularity for nonlinear elliptic problems with irregular obstacles over Reifenberg flat domains

Abstract Related Papers Cited by
  • A global Calderón-Zygmund estimate type estimate in Weighted Lorentz spaces and Lorentz-Morrey spaces is obtained for weak solutions to elliptic obstacle problems of $p$-Laplacian type with discontinuous coefficients over Reifenberg flat domains.
    Mathematics Subject Classification: Primary: 35J87; Secondary: 35R05, 35J60, 35B65, 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Baroni, Lorentz estimates for obstacle parabolic problems, Nonlinear Anal., 96 (2014), 167-188.doi: 10.1016/j.na.2013.11.004.

    [2]

    C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, 129, Academic Press, Inc., Boston, MA, 1988.

    [3]

    I. Blank and Z. Hao, Reifenberg Flatness of Free Boundaries in Obstacle Problems with VMO Ingredients, Calc. Var. Partial Differential Equations, 2014.doi: 10.1007/s00526-014-0772-3.

    [4]

    V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math., 650 (2011), 107-160.doi: 10.1515/CRELLE.2011.006.

    [5]

    S. Byun and D. K. Palagachev, Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains, Calc. Var. Partial Differential Equations, 49 (2014), 37-76.doi: 10.1007/s00526-012-0574-4.

    [6]

    S. Byun, D. Palagachev and S. Ryu, Weighted $W^{1,p}$ estimates for solutions of non-linear parabolic equations over non-smooth domains, Bull. London Math. Soc., 45 (2013), 765-778.doi: 10.1112/blms/bdt011.

    [7]

    S. Byun, Y. Cho and D. Palagachev, Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains, Proc. Amer. Math. Soc., (2015).doi: 10.1090/S0002-9939-2015-12458-6.

    [8]

    S. Byun, Y. Cho and L. Wang, Calderón-Zygmund theory for nonlinear elliptic problems with irregular obstacles, J. Funct. Anal., 263 (2012), 3117-3143.doi: 10.1016/j.jfa.2012.07.018.

    [9]

    M. Eleuteri and J. Habermann, Calderón-Zygmund type estimates for a class of obstacle problems with $p(x)$-growth, J. Math. Anal. Appl., 372 (2010), 140-161.doi: 10.1016/j.jmaa.2010.05.072.

    [10]

    A. Erhardt, Calderón-Zygmund theory for parabolic obstacle problems with nonstandard growth, Adv. Nonlinear Anal., 3 (2014), 15-44.doi: 10.1515/anona-2013-0024.

    [11]

    A. Friedman, Variational Principles and Free-Boundary Problems, Second edition, Robert E. Krieger Publishing Co. Inc., Malabar, FL, 1988.

    [12]

    L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics, 250, Springer, New York, 2009.doi: 10.1007/978-0-387-09434-2.

    [13]

    M. Gupta and A. Bhar, On Lorentz and Orlicz-Lorentz subspaces of bounded families and approximation type operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 108 (2014), 733-755.doi: 10.1007/s13398-013-0137-3.

    [14]

    J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original, Dover Publications, Inc., Mineola, NY, 2006.

    [15]

    D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., 130 (1995), 161-219.doi: 10.1006/jfan.1995.1067.

    [16]

    H. Kempka and J. Vybíral, Lorentz spaces with variable exponents, Math. Nachr., 287 (2014), 938-954.doi: 10.1002/mana.201200278.

    [17]

    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Reprint of the 1980 original, Classics in Applied Mathematics, 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.doi: 10.1137/1.9780898719451.

    [18]

    G. Lorentz, Some new functional spaces, Ann. of Math., 51 (1950), 37-55.doi: 10.2307/1969496.

    [19]

    T. Mengesha and N. C. Phuc, Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains, J. Differential Equations, 250 (2011), 2485-2507.doi: 10.1016/j.jde.2010.11.009.

    [20]

    T. Mengesha and N. C. Phuc, Global estimates for quasilinear elliptic equations on Reifenberg flat domains, Arch. Ration. Mech. Anal., 203 (2012), 189-216.doi: 10.1007/s00205-011-0446-7.

    [21]

    T. Mengesha and N. C. Phuc, Quasilinear Riccati type equations with distributional data in Morrey space framework, https://www.mittagleffler.se/preprints/list.php?program_code=1314f.

    [22]

    N. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189-206.

    [23]

    G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 6 (2007), 195-261.

    [24]

    A. Nagurney, Network Economics: A Variational Inequality Approach, Advances in Computational Economics, 1, Kluwer Academic Publishers Group, Dordrecht, 1993.doi: 10.1007/978-94-011-2178-1.

    [25]

    N. Phuc, Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with applications to quasilinear Riccati type equations, Adv. Math., 250 (2014), 387-419.doi: 10.1016/j.aim.2013.09.022.

    [26]

    E. Reifenberg, Solutions of the plateau problem for m-dimensional surfaces of varying topological type, Acta Math., 104 (1960), 1-92.doi: 10.1007/BF02547186.

    [27]

    J. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, 134, Notas de Matemática [Mathematical Notes], 114, North-Holland Publishing Co., Amsterdam, 1987.

    [28]

    C. Scheven, Gradient potential estimates in non-linear elliptic obstacle problems with measure data, J. Funct. Anal., 262 (2012), 2777-2832.doi: 10.1016/j.jfa.2012.01.003.

    [29]

    C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., 146 (2015), 7-63.doi: 10.1007/s00229-014-0684-8.

    [30]

    E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971.

    [31]

    T. Toro, Doubling and flatness: Geometry of measures, Notices Amer. Math. Soc., 44 (1997), 1087-1094.

    [32]

    F. Yao, Global higher integrability for the parabolic equations in Reifenberg domains, Math. Nachr., 283 (2010), 1358-1367.doi: 10.1002/mana.200710084.

    [33]

    C. Zhang and S. Zhou, Global weighted estimates for quasilinear elliptic equations with non-standard growth, J. Funct. Anal., 267 (2014), 605-642.doi: 10.1016/j.jfa.2014.03.022.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(180) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return