Citation: |
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, 1989.doi: 10.1007/978-1-4757-2063-1. |
[2] |
R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982. |
[3] | |
[4] |
M. Boshernitzan, A condition for minimal interval exchange maps to be uniquely ergodic, Duke Mathematical Journal, 52 (1985), 723-752.doi: 10.1215/S0012-7094-85-05238-X. |
[5] |
G. R. Brannock and J. K. Percus, Wertheim cluster development of free energy functionals for general nearest-neighbor interactions in $D=1$, The Journal of Chemical Physics, 105 (1996), 614-627.doi: 10.1063/1.471920. |
[6] |
J. A. Cuesta and C. Tutschka, Overcomplete free energy functional for $D=1$ particle systems with next neighbor interactions, Journal of Statistical Physics, 111 (2003), 1125-1148.doi: 10.1023/A:1023096031180. |
[7] |
K. F. Herzfeld and M. Goeppert-Mayer, On the states of aggregation, The Journal of Chemical Physics, 2 (1934), 38-45.doi: 10.1063/1.1749355. |
[8] |
M. Keane, Interval exchange transformations, Mathematische Zeitschrift, 141 (1975), 25-31.doi: 10.1007/BF01236981. |
[9] |
S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Annals of Mathematics, 124 (1986), 293-311.doi: 10.2307/1971280. |
[10] |
A. I. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, 1949. |
[11] |
H. Masur, Interval exchange transformations and measured foliations, Annals of Mathematics, 115 (1982), 169-200.doi: 10.2307/1971341. |
[12] |
A. van der Poorten, Fermat's four squares theorem, 2007. Available from: http://maths.mq.edu.au/~alf/SomeRecentPapers/183.pdf. |
[13] |
D. Ruelle, Statistical Mechanics: Rigorous Results, Benjamin, 1969. |
[14] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Annals of Mathematics, 115 (1982), 201-242.doi: 10.2307/1971391. |