October  2015, 35(10): 4889-4903. doi: 10.3934/dcds.2015.35.4889

Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms

1. 

Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

2. 

Faculty of Science, Yamagata University, Kojirakawa-machi 1-4-12, Yamagata 990-8560, Japan

3. 

Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa 920-1192, Japan

Received  October 2014 Revised  January 2015 Published  April 2015

The Cauchy problem of Klein-Gordon equations is considered for power and exponential type nonlinear terms with singular weights. Time local and global solutions are shown to exist in the energy class. The Caffarelli-Kohn-Nirenberg inequality and the Trudinger-Moser type inequality with singular weights are applied to the problem.
Citation: Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4889-4903. doi: 10.3934/dcds.2015.35.4889
References:
[1]

S. Adachi and K. Tanaka, A scale-invariant form of Trudinger-Moser inequality and its best exponent, Proc. Amer. Math. Soc., 1102 (1999), 148-153.  Google Scholar

[2]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.1090/S0894-0347-1989-1002633-4.  Google Scholar

[3]

L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth, Comm. Partial Differential Equations, 36 (2011), 797-818. doi: 10.1080/03605302.2010.534684.  Google Scholar

[4]

A. A. Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 1-21.  Google Scholar

[5]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139. doi: 10.1090/S0002-9947-1984-0742415-3.  Google Scholar

[6]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.  Google Scholar

[7]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[8]

M. Bouchekif and A. Matallah, Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent, Appl. Math. Lett., 22 (2009), 268-275. doi: 10.1016/j.aml.2008.03.024.  Google Scholar

[9]

P. Brenner, $L_p$-estimates of difference schemes for strictly hyperbolic systems with nonsmooth data, SIAM J. Numer. Anal., 14 (1977), 1126-1144. doi: 10.1137/0714078.  Google Scholar

[10]

H. Brézis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.), 11 (2005), 1-7. doi: 10.1007/s00029-005-0003-z.  Google Scholar

[11]

H. Brézis and T. Gallouët, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681. doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[12]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. doi: 10.1080/03605308008820154.  Google Scholar

[13]

N. Burq, F. Planchon, J. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549. doi: 10.1016/S0022-1236(03)00238-6.  Google Scholar

[14]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.  Google Scholar

[15]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282. doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[16]

J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575. doi: 10.1142/S0219891609001927.  Google Scholar

[17]

Z. Gan, Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential, Commun. Pure Appl. Anal., 8 (2009), 1541-1554. doi: 10.3934/cpaa.2009.8.1541.  Google Scholar

[18]

J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375.  Google Scholar

[19]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35.  Google Scholar

[20]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68. doi: 10.1006/jfan.1995.1119.  Google Scholar

[21]

T-S. Hsu and H-L. Lin, Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 617-633. doi: 10.1017/S0308210509000729.  Google Scholar

[22]

S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity, Comm. Pure Appl. Math., 59 (2006), 1639-1658. doi: 10.1002/cpa.20127.  Google Scholar

[23]

S. Ibrahim, M. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97. doi: 10.1090/S0002-9939-06-08240-2.  Google Scholar

[24]

S. Ibrahim and R. Jrad, Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain, J. Differential Equations, 250 (2011), 3740-3771. doi: 10.1016/j.jde.2011.01.008.  Google Scholar

[25]

S. Ibrahim, R. Jrad, M. Majdoub and T. Saanouni, Well posedness and unconditional non uniqueness for a 2D semilinear heat equation,, preprint., ().   Google Scholar

[26]

M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 297-314. doi: 10.1016/j.anihpc.2013.03.004.  Google Scholar

[27]

T. Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math., 13 (1972), 135-148 (1973). doi: 10.1007/BF02760233.  Google Scholar

[28]

J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma, Phys. Fluids, 20 (1977), 1176-1179. doi: 10.1063/1.861679.  Google Scholar

[29]

K. Morii, T. Sato and H. Wadade, Brézis-Gallouët-Wainger inequality with a double logarithmic term on a bounded domain and its sharp constants, Math. Inequal. Appl., 14 (2011), 295-312. doi: 10.7153/mia-14-24.  Google Scholar

[30]

K. Morii, T. Sato and H. Wadade, Brézis-Gallouët-Wainger type inequality with a double logarithmic term in the Hölder space: its sharp constants and extremal functions, Nonlinear Anal., 73 (2010), 1747-1766. doi: 10.1016/j.na.2010.05.012.  Google Scholar

[31]

K. Morii, T. Sato, Y. Sawano and H. Wadade, Sharp constants of Brézis-Gallouët-Wainger type inequalities with a double logarithmic term on bounded domains in Besov and Triebel-Lizorkin spaces, Boundary Value Problems, (2010), Art. ID 584521, 38 pp.  Google Scholar

[32]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092.  Google Scholar

[33]

S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal., 258 (2010), 3725-3757. doi: 10.1016/j.jfa.2010.02.015.  Google Scholar

[34]

M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and nonlinear dissipative wave equations in Sobolev spaces, Reviews in Mathematical Physics, 23 (2011), 903-931. doi: 10.1142/S0129055X11004473.  Google Scholar

[35]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., 155 (1998), 364-380. doi: 10.1006/jfan.1997.3236.  Google Scholar

[36]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487. doi: 10.1007/PL00004737.  Google Scholar

[37]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci., 37 (2001), 255-293. doi: 10.2977/prims/1145477225.  Google Scholar

[38]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equation, Nonlinear Anal., 14 (1990), 765-769. doi: 10.1016/0362-546X(90)90104-O.  Google Scholar

[39]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. doi: 10.1016/0022-247X(91)90017-T.  Google Scholar

[40]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269. doi: 10.1006/jfan.1995.1012.  Google Scholar

[41]

T. Ozawa, Characterization of Trudinger's inequality, J. Inequal. Appl., 1 (1997), 369-374. doi: 10.1155/S102558349700026X.  Google Scholar

[42]

I. Peral and J. L. Vázquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal., 129 (1995), 201-224. doi: 10.1007/BF00383673.  Google Scholar

[43]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, (1994), 303ff., approx. 7 pp. doi: 10.1155/S1073792894000346.  Google Scholar

[44]

R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J., 21 (1972), 841-842.  Google Scholar

[45]

M. Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. Henri Poincaré, Analyse nonlinéaire, 5 (1988), 425-464.  Google Scholar

[46]

M. Struwe, The critical nonlinear wave equation in two space dimensions, J. Eur. Math. Soc. (JEMS), 15 (2013), 1805-1823. doi: 10.4171/JEMS/404.  Google Scholar

[47]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  Google Scholar

[48]

B. Wang, Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$, Discrete Contin. Dynam. Systems, 5 (1999), 753-763. doi: 10.3934/dcds.1999.5.753.  Google Scholar

[49]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482. doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

show all references

References:
[1]

S. Adachi and K. Tanaka, A scale-invariant form of Trudinger-Moser inequality and its best exponent, Proc. Amer. Math. Soc., 1102 (1999), 148-153.  Google Scholar

[2]

F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773. doi: 10.1090/S0894-0347-1989-1002633-4.  Google Scholar

[3]

L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth, Comm. Partial Differential Equations, 36 (2011), 797-818. doi: 10.1080/03605302.2010.534684.  Google Scholar

[4]

A. A. Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 1-21.  Google Scholar

[5]

P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139. doi: 10.1090/S0002-9947-1984-0742415-3.  Google Scholar

[6]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.  Google Scholar

[7]

J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976.  Google Scholar

[8]

M. Bouchekif and A. Matallah, Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent, Appl. Math. Lett., 22 (2009), 268-275. doi: 10.1016/j.aml.2008.03.024.  Google Scholar

[9]

P. Brenner, $L_p$-estimates of difference schemes for strictly hyperbolic systems with nonsmooth data, SIAM J. Numer. Anal., 14 (1977), 1126-1144. doi: 10.1137/0714078.  Google Scholar

[10]

H. Brézis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.), 11 (2005), 1-7. doi: 10.1007/s00029-005-0003-z.  Google Scholar

[11]

H. Brézis and T. Gallouët, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681. doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[12]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789. doi: 10.1080/03605308008820154.  Google Scholar

[13]

N. Burq, F. Planchon, J. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549. doi: 10.1016/S0022-1236(03)00238-6.  Google Scholar

[14]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275.  Google Scholar

[15]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282. doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[16]

J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575. doi: 10.1142/S0219891609001927.  Google Scholar

[17]

Z. Gan, Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential, Commun. Pure Appl. Anal., 8 (2009), 1541-1554. doi: 10.3934/cpaa.2009.8.1541.  Google Scholar

[18]

J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375.  Google Scholar

[19]

J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35.  Google Scholar

[20]

J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68. doi: 10.1006/jfan.1995.1119.  Google Scholar

[21]

T-S. Hsu and H-L. Lin, Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 617-633. doi: 10.1017/S0308210509000729.  Google Scholar

[22]

S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity, Comm. Pure Appl. Math., 59 (2006), 1639-1658. doi: 10.1002/cpa.20127.  Google Scholar

[23]

S. Ibrahim, M. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97. doi: 10.1090/S0002-9939-06-08240-2.  Google Scholar

[24]

S. Ibrahim and R. Jrad, Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain, J. Differential Equations, 250 (2011), 3740-3771. doi: 10.1016/j.jde.2011.01.008.  Google Scholar

[25]

S. Ibrahim, R. Jrad, M. Majdoub and T. Saanouni, Well posedness and unconditional non uniqueness for a 2D semilinear heat equation,, preprint., ().   Google Scholar

[26]

M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 297-314. doi: 10.1016/j.anihpc.2013.03.004.  Google Scholar

[27]

T. Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math., 13 (1972), 135-148 (1973). doi: 10.1007/BF02760233.  Google Scholar

[28]

J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma, Phys. Fluids, 20 (1977), 1176-1179. doi: 10.1063/1.861679.  Google Scholar

[29]

K. Morii, T. Sato and H. Wadade, Brézis-Gallouët-Wainger inequality with a double logarithmic term on a bounded domain and its sharp constants, Math. Inequal. Appl., 14 (2011), 295-312. doi: 10.7153/mia-14-24.  Google Scholar

[30]

K. Morii, T. Sato and H. Wadade, Brézis-Gallouët-Wainger type inequality with a double logarithmic term in the Hölder space: its sharp constants and extremal functions, Nonlinear Anal., 73 (2010), 1747-1766. doi: 10.1016/j.na.2010.05.012.  Google Scholar

[31]

K. Morii, T. Sato, Y. Sawano and H. Wadade, Sharp constants of Brézis-Gallouët-Wainger type inequalities with a double logarithmic term on bounded domains in Besov and Triebel-Lizorkin spaces, Boundary Value Problems, (2010), Art. ID 584521, 38 pp.  Google Scholar

[32]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092.  Google Scholar

[33]

S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal., 258 (2010), 3725-3757. doi: 10.1016/j.jfa.2010.02.015.  Google Scholar

[34]

M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and nonlinear dissipative wave equations in Sobolev spaces, Reviews in Mathematical Physics, 23 (2011), 903-931. doi: 10.1142/S0129055X11004473.  Google Scholar

[35]

M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., 155 (1998), 364-380. doi: 10.1006/jfan.1997.3236.  Google Scholar

[36]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487. doi: 10.1007/PL00004737.  Google Scholar

[37]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci., 37 (2001), 255-293. doi: 10.2977/prims/1145477225.  Google Scholar

[38]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equation, Nonlinear Anal., 14 (1990), 765-769. doi: 10.1016/0362-546X(90)90104-O.  Google Scholar

[39]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540. doi: 10.1016/0022-247X(91)90017-T.  Google Scholar

[40]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269. doi: 10.1006/jfan.1995.1012.  Google Scholar

[41]

T. Ozawa, Characterization of Trudinger's inequality, J. Inequal. Appl., 1 (1997), 369-374. doi: 10.1155/S102558349700026X.  Google Scholar

[42]

I. Peral and J. L. Vázquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal., 129 (1995), 201-224. doi: 10.1007/BF00383673.  Google Scholar

[43]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, (1994), 303ff., approx. 7 pp. doi: 10.1155/S1073792894000346.  Google Scholar

[44]

R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J., 21 (1972), 841-842.  Google Scholar

[45]

M. Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. Henri Poincaré, Analyse nonlinéaire, 5 (1988), 425-464.  Google Scholar

[46]

M. Struwe, The critical nonlinear wave equation in two space dimensions, J. Eur. Math. Soc. (JEMS), 15 (2013), 1805-1823. doi: 10.4171/JEMS/404.  Google Scholar

[47]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  Google Scholar

[48]

B. Wang, Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$, Discrete Contin. Dynam. Systems, 5 (1999), 753-763. doi: 10.3934/dcds.1999.5.753.  Google Scholar

[49]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482. doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[1]

Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505

[2]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[3]

Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024

[4]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[5]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

[6]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[7]

Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155

[8]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[9]

Changliang Zhou, Chunqin Zhou. Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2309-2328. doi: 10.3934/cpaa.2018110

[10]

Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212

[11]

Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064

[12]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[13]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[14]

Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021137

[15]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[16]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[17]

Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure & Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006

[18]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[19]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[20]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (1)

[Back to Top]