-
Previous Article
Wavefronts of a stage structured model with state--dependent delay
- DCDS Home
- This Issue
-
Next Article
Remarks on the Cauchy problem of Klein-Gordon equations with weighted nonlinear terms
Wave extension problem for the fractional Laplacian
1. | Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland |
2. | Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden |
3. | Departamento de Matemáticas, Universidad Autónoma de Madrid and ICMAT, 28049 Madrid, Spain |
References:
[1] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[2] |
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. |
[3] |
J. E. Galé, P. J. Miana and P. R. Stinga, Extension problem and fractional operators: Semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368.
doi: 10.1007/s00028-013-0182-6. |
[4] |
N. N. Lebedev, Special Functions and Their Applications, Revised English edition, Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. |
[5] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[6] |
R. S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc., 148 (1970), 461-471.
doi: 10.1090/S0002-9947-1970-0256219-1. |
show all references
References:
[1] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[2] |
L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. |
[3] |
J. E. Galé, P. J. Miana and P. R. Stinga, Extension problem and fractional operators: Semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368.
doi: 10.1007/s00028-013-0182-6. |
[4] |
N. N. Lebedev, Special Functions and Their Applications, Revised English edition, Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. |
[5] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[6] |
R. S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc., 148 (1970), 461-471.
doi: 10.1090/S0002-9947-1970-0256219-1. |
[1] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3803-3819. doi: 10.3934/dcdss.2021019 |
[2] |
Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077 |
[3] |
Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168 |
[4] |
Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071 |
[5] |
Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure and Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929 |
[6] |
Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations and Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233 |
[7] |
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047 |
[8] |
Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure and Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028 |
[9] |
M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121 |
[10] |
Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254 |
[11] |
Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104 |
[12] |
Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107 |
[13] |
Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 |
[14] |
Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188 |
[15] |
David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298 |
[16] |
Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246 |
[17] |
Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499 |
[18] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021 |
[19] |
Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128 |
[20] |
Qihong Shi, Congming Peng, Qingxuan Wang. Blowup results for the fractional Schrödinger equation without gauge invariance. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021304 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]