# American Institute of Mathematical Sciences

October  2015, 35(10): 4931-4954. doi: 10.3934/dcds.2015.35.4931

## Wavefronts of a stage structured model with state--dependent delay

 1 Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China 2 School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875 3 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

Received  July 2013 Revised  January 2015 Published  April 2015

This paper deals with a diffusive stage structured model with state-dependent delay which is assumed to be an increasing function of the population density. Compared with the constant delay, the state--dependent delay makes the dynamic behavior more complex. For the state--dependent delay system, the dynamic behavior is dependent of the diffusion coefficients, while the equilibrium state of constant delay system is not destabilized by diffusion. Through calculating the minimum wave speed, we find that the wave is slowed down by the state-dependent delay. Then, the existence of traveling waves is obtained by constructing a pair of upper--lower solutions and using Schauder's fixed point theorem. Finally, the traveling wavefront solutions for large wave speed are also discussed, and the fronts appear to be all monotone, regardless of the state dependent delay. This is an interesting property, since many findings are frequently reported that delay causes a loss of monotonicity, with the front developing a prominent hump in some other delay models.
Citation: Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931
##### References:

show all references

##### References:
 [1] Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071 [2] Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 [3] Shangzhi Li, Shangjiang Guo. Dynamics of a two-species stage-structured model incorporating state-dependent maturation delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1393-1423. doi: 10.3934/dcdsb.2017067 [4] Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415 [5] Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319 [6] Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365 [7] Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 [8] István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773 [9] M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83 [10] Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074 [11] Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143 [12] Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6253-6265. doi: 10.3934/dcdsb.2021017 [13] Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2022, 15 (1) : 143-159. doi: 10.3934/dcdss.2021035 [14] Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 [15] Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709 [16] Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445 [17] Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 [18] Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347 [19] Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005 [20] Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051

2020 Impact Factor: 1.392