October  2015, 35(10): 5037-5054. doi: 10.3934/dcds.2015.35.5037

Partially hyperbolic diffeomorphisms with a trapping property

1. 

CMAT, Facultad de Ciencias, Universidad de la República, Igua 4225, Montevideo 11400, Uruguay

Received  August 2014 Revised  January 2015 Published  April 2015

We study partially hyperbolic diffeomorphisms satisfying a trapping property which makes them look as if they were Anosov at large scale. We show that, as expected, they share several properties with Anosov diffeomorphisms. We construct an expansive quotient of the dynamics and study some dynamical consequences related to this quotient.
Citation: Rafael Potrie. Partially hyperbolic diffeomorphisms with a trapping property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5037-5054. doi: 10.3934/dcds.2015.35.5037
References:
[1]

A. Artigue, J. Brum and R. Potrie, Local product structure for expansive homeomorphisms,, Topology and its Applications, 156 (2009), 674.  doi: 10.1016/j.topol.2008.09.004.  Google Scholar

[2]

C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).   Google Scholar

[3]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic diffeomorphisms whose central direction is mostly contracting,, Israel J. of Math., 115 (2000), 157.  doi: 10.1007/BF02810585.  Google Scholar

[4]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[5]

D. Bonhet, Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation,, Journal of Modern Dynamics, 7 (2013), 565.  doi: 10.3934/jmd.2013.7.565.  Google Scholar

[6]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, Journal of Modern Dynamics, 3 (2009), 1.  doi: 10.3934/jmd.2009.3.1.  Google Scholar

[7]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete and Continuous Dynamical Systems A (Pesin birthday issue), 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[8]

J. Buzzi and T. Fisher, Entropic stability beyond partial hyperbolicity,, Journal of Modern Dynamics, 7 (2013), 527.  doi: 10.3934/jmd.2013.7.527.  Google Scholar

[9]

A. Candel and L. Conlon, Foliations I and II,, Graduate studies in Mathematics, (2003).   Google Scholar

[10]

P. Carrasco, Compact Dynamical Foliations,, Ph.D. Thesis, (2011).   Google Scholar

[11]

M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived from Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 13 (1993), 21.  doi: 10.1017/S0143385700007185.  Google Scholar

[12]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, to appear in Inventiones Math., ().  doi: 10.1007/s00222-014-0553-9.  Google Scholar

[13]

R. Daverman, Decompositions of Manifolds,, Pure and Applied Mathematics, (1986).   Google Scholar

[14]

T. Fisher, R. Potrie and M. Sambarino, Dynamical coherence for partially hyperbolic diffeomorphisms isotopic to Anosov on tori,, Mathematische Zeitchcrift, 278 (2014), 149.  doi: 10.1007/s00209-014-1310-x.  Google Scholar

[15]

J. Franks, Anosov Diffeomorphisms,, Proc. Sympos. Pure Math., 14 (1970), 61.   Google Scholar

[16]

J. Franks, Homology and Dynamical Systems,, CBMS Regional Conference Series in Mathematics, (1982).   Google Scholar

[17]

A. Gogolev, Partially hyperbolic diffeomorphisms with compact center foliations,, Journal of Modern Dynamics, 5 (2011), 747.  doi: 10.3934/jmd.2011.5.747.  Google Scholar

[18]

A. Gogolev and F. Rodriguez Hertz, Manifolds with higher homotopy which do not support Anosov diffeomorphisms,, Bulletin of the London Math Society, 46 (2014), 349.  doi: 10.1112/blms/bdt100.  Google Scholar

[19]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three dimensional nilmanifolds,, Journal of the London Math. Society, 89 (2014), 853.  doi: 10.1112/jlms/jdu013.  Google Scholar

[20]

A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in three dimensional manifolds with solvable fundamental group,, to appear in Journal of Topology, ().   Google Scholar

[21]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Springer Lecture Notes in Math., (1977).   Google Scholar

[22]

W. Hsiang and C. T. C. Wall, On homotopy tori II,, Bull. London Math. Soc., 1 (1969), 341.  doi: 10.1112/blms/1.3.341.  Google Scholar

[23]

S. L. Jones, The impossibility of filling $E^n$ with arcs,, Bull. Amer. Math. Soc., 74 (1968), 155.  doi: 10.1090/S0002-9904-1968-11919-6.  Google Scholar

[24]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, With a supplementary chapter by Katok and Leonardo Mendoza, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[25]

A. Manning, There are no new anosov on tori,, Amer. Jour. of Math., 96 (1974), 422.  doi: 10.2307/2373551.  Google Scholar

[26]

R. Mañe, Contributions to the stability conjecture,, Topology, 17 (1978), 383.  doi: 10.1016/0040-9383(78)90005-8.  Google Scholar

[27]

R. Mañe, Expansive homeomorphisms and topological dimension,, Trans. Amer. Math. Soc., 252 (1979), 313.  doi: 10.1090/S0002-9947-1979-0534124-9.  Google Scholar

[28]

S. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. Jour. of Math., 92 (1970), 761.  doi: 10.2307/2373372.  Google Scholar

[29]

S. Newhouse, Hyperbolic limit sets,, Transactions of the A.M.S, 167 (1972), 125.  doi: 10.1090/S0002-9947-1972-0295388-6.  Google Scholar

[30]

J. Ombach, Equivalent conditions for hyperbolic coordinates,, Topology and its Applications, 23 (1986), 87.  doi: 10.1016/0166-8641(86)90019-2.  Google Scholar

[31]

R. Potrie, Wild Milnor attractors accumulated by lower dimensional dynamics,, Ergodic Theory and Dynamical Systems, 34 (2014), 236.  doi: 10.1017/etds.2012.124.  Google Scholar

[32]

R. Potrie, Partially Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds,, Ph.D Thesis, (2012).   Google Scholar

[33]

R. Potrie, Partial hyperbolicity and foliations in $\mathbbT^3$,, Journal of Modern Dynamics, (2014).   Google Scholar

[34]

R. Potrie, A few remarks on partially hyperbolic diffeomorphisms of $\mathbbT^3$ isotopic to Anosov,, Journal of Dynamics and Differential Equations, 26 (2014), 805.  doi: 10.1007/s10884-014-9362-5.  Google Scholar

[35]

J. H. Roberts, Collections filling the plane,, Duke Math. J., 2 (1936), 10.  doi: 10.1215/S0012-7094-36-00202-8.  Google Scholar

[36]

M. Roldan, Hyperbolic sets and entropy at the homological level,, preprint, (2014).   Google Scholar

[37]

K. Shiraiwa, Manifolds which do not admit Anosov diffeomorphisms,, Nagoya Math J., 49 (1973), 111.   Google Scholar

[38]

J. L. Vieitez, Expansive homeomorphisms and hyperbolic diffeomorphisms on three manifolds,, Ergodic Theory and Dynamical Systems, 16 (1996), 591.  doi: 10.1017/S0143385700008981.  Google Scholar

show all references

References:
[1]

A. Artigue, J. Brum and R. Potrie, Local product structure for expansive homeomorphisms,, Topology and its Applications, 156 (2009), 674.  doi: 10.1016/j.topol.2008.09.004.  Google Scholar

[2]

C. Bonatti, L. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective,, Encyclopaedia of Mathematical Sciences, (2005).   Google Scholar

[3]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic diffeomorphisms whose central direction is mostly contracting,, Israel J. of Math., 115 (2000), 157.  doi: 10.1007/BF02810585.  Google Scholar

[4]

C. Bonatti and A. Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3-manifolds,, Topology, 44 (2005), 475.  doi: 10.1016/j.top.2004.10.009.  Google Scholar

[5]

D. Bonhet, Codimension-1 partially hyperbolic diffeomorphisms with a uniformly compact center foliation,, Journal of Modern Dynamics, 7 (2013), 565.  doi: 10.3934/jmd.2013.7.565.  Google Scholar

[6]

M. Brin, D. Burago and S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,, Journal of Modern Dynamics, 3 (2009), 1.  doi: 10.3934/jmd.2009.3.1.  Google Scholar

[7]

K. Burns and A. Wilkinson, Dynamical coherence and center bunching,, Discrete and Continuous Dynamical Systems A (Pesin birthday issue), 22 (2008), 89.  doi: 10.3934/dcds.2008.22.89.  Google Scholar

[8]

J. Buzzi and T. Fisher, Entropic stability beyond partial hyperbolicity,, Journal of Modern Dynamics, 7 (2013), 527.  doi: 10.3934/jmd.2013.7.527.  Google Scholar

[9]

A. Candel and L. Conlon, Foliations I and II,, Graduate studies in Mathematics, (2003).   Google Scholar

[10]

P. Carrasco, Compact Dynamical Foliations,, Ph.D. Thesis, (2011).   Google Scholar

[11]

M. Carvalho, Sinai-Ruelle-Bowen measures for N-dimensional derived from Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 13 (1993), 21.  doi: 10.1017/S0143385700007185.  Google Scholar

[12]

S. Crovisier and E. Pujals, Essential hyperbolicity and homoclinic bifurcations: A dichotomy phenomenon/mechanism for diffeomorphisms,, to appear in Inventiones Math., ().  doi: 10.1007/s00222-014-0553-9.  Google Scholar

[13]

R. Daverman, Decompositions of Manifolds,, Pure and Applied Mathematics, (1986).   Google Scholar

[14]

T. Fisher, R. Potrie and M. Sambarino, Dynamical coherence for partially hyperbolic diffeomorphisms isotopic to Anosov on tori,, Mathematische Zeitchcrift, 278 (2014), 149.  doi: 10.1007/s00209-014-1310-x.  Google Scholar

[15]

J. Franks, Anosov Diffeomorphisms,, Proc. Sympos. Pure Math., 14 (1970), 61.   Google Scholar

[16]

J. Franks, Homology and Dynamical Systems,, CBMS Regional Conference Series in Mathematics, (1982).   Google Scholar

[17]

A. Gogolev, Partially hyperbolic diffeomorphisms with compact center foliations,, Journal of Modern Dynamics, 5 (2011), 747.  doi: 10.3934/jmd.2011.5.747.  Google Scholar

[18]

A. Gogolev and F. Rodriguez Hertz, Manifolds with higher homotopy which do not support Anosov diffeomorphisms,, Bulletin of the London Math Society, 46 (2014), 349.  doi: 10.1112/blms/bdt100.  Google Scholar

[19]

A. Hammerlindl and R. Potrie, Pointwise partial hyperbolicity in three dimensional nilmanifolds,, Journal of the London Math. Society, 89 (2014), 853.  doi: 10.1112/jlms/jdu013.  Google Scholar

[20]

A. Hammerlindl and R. Potrie, Classification of partially hyperbolic diffeomorphisms in three dimensional manifolds with solvable fundamental group,, to appear in Journal of Topology, ().   Google Scholar

[21]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Springer Lecture Notes in Math., (1977).   Google Scholar

[22]

W. Hsiang and C. T. C. Wall, On homotopy tori II,, Bull. London Math. Soc., 1 (1969), 341.  doi: 10.1112/blms/1.3.341.  Google Scholar

[23]

S. L. Jones, The impossibility of filling $E^n$ with arcs,, Bull. Amer. Math. Soc., 74 (1968), 155.  doi: 10.1090/S0002-9904-1968-11919-6.  Google Scholar

[24]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, With a supplementary chapter by Katok and Leonardo Mendoza, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[25]

A. Manning, There are no new anosov on tori,, Amer. Jour. of Math., 96 (1974), 422.  doi: 10.2307/2373551.  Google Scholar

[26]

R. Mañe, Contributions to the stability conjecture,, Topology, 17 (1978), 383.  doi: 10.1016/0040-9383(78)90005-8.  Google Scholar

[27]

R. Mañe, Expansive homeomorphisms and topological dimension,, Trans. Amer. Math. Soc., 252 (1979), 313.  doi: 10.1090/S0002-9947-1979-0534124-9.  Google Scholar

[28]

S. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. Jour. of Math., 92 (1970), 761.  doi: 10.2307/2373372.  Google Scholar

[29]

S. Newhouse, Hyperbolic limit sets,, Transactions of the A.M.S, 167 (1972), 125.  doi: 10.1090/S0002-9947-1972-0295388-6.  Google Scholar

[30]

J. Ombach, Equivalent conditions for hyperbolic coordinates,, Topology and its Applications, 23 (1986), 87.  doi: 10.1016/0166-8641(86)90019-2.  Google Scholar

[31]

R. Potrie, Wild Milnor attractors accumulated by lower dimensional dynamics,, Ergodic Theory and Dynamical Systems, 34 (2014), 236.  doi: 10.1017/etds.2012.124.  Google Scholar

[32]

R. Potrie, Partially Hyperbolicity and Attracting Regions in 3-Dimensional Manifolds,, Ph.D Thesis, (2012).   Google Scholar

[33]

R. Potrie, Partial hyperbolicity and foliations in $\mathbbT^3$,, Journal of Modern Dynamics, (2014).   Google Scholar

[34]

R. Potrie, A few remarks on partially hyperbolic diffeomorphisms of $\mathbbT^3$ isotopic to Anosov,, Journal of Dynamics and Differential Equations, 26 (2014), 805.  doi: 10.1007/s10884-014-9362-5.  Google Scholar

[35]

J. H. Roberts, Collections filling the plane,, Duke Math. J., 2 (1936), 10.  doi: 10.1215/S0012-7094-36-00202-8.  Google Scholar

[36]

M. Roldan, Hyperbolic sets and entropy at the homological level,, preprint, (2014).   Google Scholar

[37]

K. Shiraiwa, Manifolds which do not admit Anosov diffeomorphisms,, Nagoya Math J., 49 (1973), 111.   Google Scholar

[38]

J. L. Vieitez, Expansive homeomorphisms and hyperbolic diffeomorphisms on three manifolds,, Ergodic Theory and Dynamical Systems, 16 (1996), 591.  doi: 10.1017/S0143385700008981.  Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[2]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[3]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[6]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[7]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[15]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]