October  2015, 35(10): 5083-5105. doi: 10.3934/dcds.2015.35.5083

Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity

1. 

School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Xiamen, 361005, China

2. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005

3. 

School of Mathematical Sciences, Xiamen University, Fujian 361005

Received  July 2014 Revised  February 2015 Published  April 2015

In this paper, the compressible magnetohydrodynamic equations without heat conductivity are considered in $\mathbb{R}^3$. The global solution is obtained by combining the local existence and a priori estimates under the smallness assumption on the initial perturbation in $H^l (l>3)$. But we don't need the bound of $L^1$ norm. This is different from the work [5]. Our proof is based on pure estimates to get the time decay estimates on the pressure, velocity and magnet field. In particular, we use a fast decay of velocity gradient to get the uniform bound of the non-dissipative entropy, which is sufficient to close the priori estimates. In addition, we study the optimal convergence rates of the global solution.
Citation: Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Anaiysis and Nonliner Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften, (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations,, Nonlinear Anal., 72 (2010), 4438. doi: 10.1016/j.na.2010.02.019. Google Scholar

[3]

G. Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data,, J. Differential Equations, 182 (2002), 344. doi: 10.1006/jdeq.2001.4111. Google Scholar

[4]

G. Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations,, Z. Angew. Math. Phys., 54 (2003), 608. doi: 10.1007/s00033-003-1017-z. Google Scholar

[5]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,, Indiana Univ. Math. J., 57 (2008), 2299. doi: 10.1512/iumj.2008.57.3326. Google Scholar

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force,, Math. Models Methods Appl. Sci., 17 (2007), 737. doi: 10.1142/S021820250700208X. Google Scholar

[7]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 69 (2008), 3637. doi: 10.1016/j.na.2007.10.005. Google Scholar

[8]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum,, Nonlinear Anal. RWA, 10 (2009), 392. doi: 10.1016/j.nonrwa.2007.10.001. Google Scholar

[9]

Z. S. Gao, Z. Tan and G. C. Wu, Global existence and convergence rates of smooth solutions for 3-D the compressible magnetohydrodynamic equations without heat conductivity,, Acta Mthematica Scientia, 34 (2014), 93. doi: 10.1016/S0252-9602(13)60129-0. Google Scholar

[10]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics,, Z. Angew. Math. Phys., 56 (2005), 791. doi: 10.1007/s00033-005-4057-8. Google Scholar

[11]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamics flows,, Comm. Math. Phys., 283 (2008), 255. doi: 10.1007/s00220-008-0497-2. Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows,, Arch. Ration. Mech. Anal., 197 (2010), 203. doi: 10.1007/s00205-010-0295-9. Google Scholar

[13]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space,, Comm. Math. Phys., 251 (2004), 365. doi: 10.1007/s00220-004-1062-2. Google Scholar

[14]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, Ph.D thesis, (1983). Google Scholar

[15]

S. Kawashima, Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics,, Japan J. Appl. Math., 1 (1984), 207. doi: 10.1007/BF03167869. Google Scholar

[16]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics,, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384. doi: 10.3792/pjaa.58.384. Google Scholar

[17]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621. doi: 10.1007/s002200050543. Google Scholar

[18]

H. L. Li, X. Y. Xu and J. W. Zhang, Global classical solutions to 3d compressible magnetohydrodynamic equations with large oscillations and vacuum,, SIAM J. Math. Anal., 45 (2013), 1356. doi: 10.1137/120893355. Google Scholar

[19]

F. Li and H. J. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109. Google Scholar

[20]

T. P. Liu and Y. Zeng, Compressible Navier-Stokes equations with zero heat conductivity,, J. Differential Equations, 153 (1999), 225. doi: 10.1006/jdeq.1998.3554. Google Scholar

[21]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, Nonlinear Anal., 9 (1985), 399. doi: 10.1016/0362-546X(85)90001-X. Google Scholar

[22]

Z. Tan and H. Q. Wang, Optimal decay rates of the compressible magnetohydrodynamic equations,, Nonlinear Anal. RWA, 14 (2013), 188. doi: 10.1016/j.nonrwa.2012.05.012. Google Scholar

[23]

Z. Tan and J. Y. Wang, On hyperbolic-dissipative systems of composite type,, preprint., (). Google Scholar

[24]

T. Umeda, S. Kawashiwa and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics,, Japan J. Appl. Math., 1 (1984), 435. doi: 10.1007/BF03167068. Google Scholar

[25]

A. I. Volpert and S. I. Khudiaev, On the Cauchy problem for composite systems of non-linear equations,, Mat. Sb., 87 (1972), 504. Google Scholar

[26]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics,, SIAM J. Appl. Math., 63 (2003), 1424. doi: 10.1137/S0036139902409284. Google Scholar

[27]

Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation,, Arch. Ration. Mech. Anal., 150 (1999), 225. doi: 10.1007/s002050050188. Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Anaiysis and Nonliner Partial Differential Equations,, Grundlehren der mathematischen Wissenschaften, (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations,, Nonlinear Anal., 72 (2010), 4438. doi: 10.1016/j.na.2010.02.019. Google Scholar

[3]

G. Q. Chen and D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data,, J. Differential Equations, 182 (2002), 344. doi: 10.1006/jdeq.2001.4111. Google Scholar

[4]

G. Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamics equations,, Z. Angew. Math. Phys., 54 (2003), 608. doi: 10.1007/s00033-003-1017-z. Google Scholar

[5]

R. J. Duan and H. F. Ma, Global existence and convergence rates for the 3-D compressible Navier-Stokes equations without heat conductivity,, Indiana Univ. Math. J., 57 (2008), 2299. doi: 10.1512/iumj.2008.57.3326. Google Scholar

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rate for the compressible Navier-Stokes equations with potential force,, Math. Models Methods Appl. Sci., 17 (2007), 737. doi: 10.1142/S021820250700208X. Google Scholar

[7]

J. Fan and W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 69 (2008), 3637. doi: 10.1016/j.na.2007.10.005. Google Scholar

[8]

J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum,, Nonlinear Anal. RWA, 10 (2009), 392. doi: 10.1016/j.nonrwa.2007.10.001. Google Scholar

[9]

Z. S. Gao, Z. Tan and G. C. Wu, Global existence and convergence rates of smooth solutions for 3-D the compressible magnetohydrodynamic equations without heat conductivity,, Acta Mthematica Scientia, 34 (2014), 93. doi: 10.1016/S0252-9602(13)60129-0. Google Scholar

[10]

D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics,, Z. Angew. Math. Phys., 56 (2005), 791. doi: 10.1007/s00033-005-4057-8. Google Scholar

[11]

X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamics flows,, Comm. Math. Phys., 283 (2008), 255. doi: 10.1007/s00220-008-0497-2. Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamics flows,, Arch. Ration. Mech. Anal., 197 (2010), 203. doi: 10.1007/s00205-010-0295-9. Google Scholar

[13]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space,, Comm. Math. Phys., 251 (2004), 365. doi: 10.1007/s00220-004-1062-2. Google Scholar

[14]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, Ph.D thesis, (1983). Google Scholar

[15]

S. Kawashima, Smooth global solutions for two-dimensinal equations of electromagneto-fluid dynamics,, Japan J. Appl. Math., 1 (1984), 207. doi: 10.1007/BF03167869. Google Scholar

[16]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics,, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384. doi: 10.3792/pjaa.58.384. Google Scholar

[17]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621. doi: 10.1007/s002200050543. Google Scholar

[18]

H. L. Li, X. Y. Xu and J. W. Zhang, Global classical solutions to 3d compressible magnetohydrodynamic equations with large oscillations and vacuum,, SIAM J. Math. Anal., 45 (2013), 1356. doi: 10.1137/120893355. Google Scholar

[19]

F. Li and H. J. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109. Google Scholar

[20]

T. P. Liu and Y. Zeng, Compressible Navier-Stokes equations with zero heat conductivity,, J. Differential Equations, 153 (1999), 225. doi: 10.1006/jdeq.1998.3554. Google Scholar

[21]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, Nonlinear Anal., 9 (1985), 399. doi: 10.1016/0362-546X(85)90001-X. Google Scholar

[22]

Z. Tan and H. Q. Wang, Optimal decay rates of the compressible magnetohydrodynamic equations,, Nonlinear Anal. RWA, 14 (2013), 188. doi: 10.1016/j.nonrwa.2012.05.012. Google Scholar

[23]

Z. Tan and J. Y. Wang, On hyperbolic-dissipative systems of composite type,, preprint., (). Google Scholar

[24]

T. Umeda, S. Kawashiwa and Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics,, Japan J. Appl. Math., 1 (1984), 435. doi: 10.1007/BF03167068. Google Scholar

[25]

A. I. Volpert and S. I. Khudiaev, On the Cauchy problem for composite systems of non-linear equations,, Mat. Sb., 87 (1972), 504. Google Scholar

[26]

D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics,, SIAM J. Appl. Math., 63 (2003), 1424. doi: 10.1137/S0036139902409284. Google Scholar

[27]

Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation,, Arch. Ration. Mech. Anal., 150 (1999), 225. doi: 10.1007/s002050050188. Google Scholar

[1]

Jishan Fan, Fucai Li, Gen Nakamura. A regularity criterion for the 3D full compressible magnetohydrodynamic equations with zero heat conductivity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1757-1766. doi: 10.3934/dcdsb.2018079

[2]

Yanmin Mu. Convergence of the compressible isentropic magnetohydrodynamic equations to the incompressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2014, 7 (4) : 739-753. doi: 10.3934/krm.2014.7.739

[3]

Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743

[4]

Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077

[5]

Xiangdi Huang, Zhouping Xin. On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4477-4493. doi: 10.3934/dcds.2016.36.4477

[6]

José A. Carrillo, Jean Dolbeault, Ivan Gentil, Ansgar Jüngel. Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1027-1050. doi: 10.3934/dcdsb.2006.6.1027

[7]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[8]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[9]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[10]

Zefu Feng, Changjiang Zhu. Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3069-3097. doi: 10.3934/dcds.2019127

[11]

Jishan Fan, Fucai Li, Gen Nakamura. Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain. Conference Publications, 2015, 2015 (special) : 387-394. doi: 10.3934/proc.2015.0387

[12]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[13]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[14]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[15]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[16]

Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763

[17]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[18]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[19]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[20]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]