• Previous Article
    Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity
October  2015, 35(10): 5107-5131. doi: 10.3934/dcds.2015.35.5107

Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system

1. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

2. 

College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China

Received  May 2014 Revised  January 2015 Published  April 2015

A delayed lattice dynamical system with non-local diffusion and interaction is considered in this paper. The exact asymptotics of the wave profile at both wave tails is derived, and all the wave profiles are shown to be strictly increasing. Moreover, we prove that the wave profile with a given admissible speed is unique up to translation. These results generalize earlier monotonicity, asymptotics and uniqueness results in the literature.
Citation: Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107
References:
[1]

M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: Diekmann-Kaper theory of a nonlinear convolution equation re-visited,, Math. Ann., 354 (2012), 73.  doi: 10.1007/s00208-011-0722-8.  Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transition,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Math., 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[4]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.  doi: 10.1137/050627824.  Google Scholar

[6]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,, J. Differential Equations, 184 (2002), 549.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[7]

J. Coville, On uniqueness and monotonicity of non-local reaction diffusion equation,, Ann. Mat. Pura Appl., 185 (2006), 461.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[8]

S.-N. Chow, J. Mallet-Paret and W. X. Shen, Travelling waves in lattice dynamical systems,, J. Differential Equations, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[9]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[10]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal. TMA., 2 (1978), 721.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[11]

J. Fang, J. Wei and X.-Q. Zhao, Uniqueness of traveling waves for nonlocal lattice equations,, Proc. Amer. Math. Soc., 139 (2010), 1361.  doi: 10.1090/S0002-9939-2010-10540-3.  Google Scholar

[12]

J. Fang, J. Wei and X.-Q. Zhao, Spreading speed and travelling waves for non-monotone time-delayed lattice equations,, Proc. Roy. Math. Soc. Lond. A., 466 (2010), 1919.  doi: 10.1098/rspa.2009.0577.  Google Scholar

[13]

J.-S. Guo and Y.-C. Lin, Traveling wave solution for a lattice dynamical system with convolution type nonlinearity,, Discrete Contin. Dyn. Syst., 32 (2012), 101.  doi: 10.3934/dcds.2012.32.101.  Google Scholar

[14]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[15]

S. W. Ma and X. F. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[16]

S. W. Ma, P. X. Weng and X. F. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation,, Nonlinear Analysis, 65 (2006), 1858.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[17]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spred and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[18]

D. V. Widder, The Laplace Transform,, Princeton University Press, (1941).   Google Scholar

[19]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[20]

J. H. Wu and X. F. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations,, J. Differential Equations, 135 (1997), 315.  doi: 10.1006/jdeq.1996.3232.  Google Scholar

[21]

Z. X. Yu, Uniqueness of critical traveling waves for nonlocal lattice equations with delays,, Proc. Amer. Math. Soc., 140 (2012), 3853.  doi: 10.1090/S0002-9939-2012-11225-0.  Google Scholar

[22]

P. A. Zhang and W. T. Li, Moonotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage,, Nonlinear Anal. TMA., 72 (2010), 2178.  doi: 10.1016/j.na.2009.10.016.  Google Scholar

[23]

B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation,, J. Differential Equations, 105 (1993), 46.  doi: 10.1006/jdeq.1993.1082.  Google Scholar

show all references

References:
[1]

M. Aguerrea, C. Gomez and S. Trofimchuk, On uniqueness of semi-wavefronts: Diekmann-Kaper theory of a nonlinear convolution equation re-visited,, Math. Ann., 354 (2012), 73.  doi: 10.1007/s00208-011-0722-8.  Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transition,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method,, Bol. Soc. Brasil. Math., 22 (1991), 1.  doi: 10.1007/BF01244896.  Google Scholar

[4]

X. Chen and J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,, Math. Ann., 326 (2003), 123.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[5]

X. Chen, S.-C. Fu and J.-S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,, SIAM J. Math. Anal., 38 (2006), 233.  doi: 10.1137/050627824.  Google Scholar

[6]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,, J. Differential Equations, 184 (2002), 549.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[7]

J. Coville, On uniqueness and monotonicity of non-local reaction diffusion equation,, Ann. Mat. Pura Appl., 185 (2006), 461.  doi: 10.1007/s10231-005-0163-7.  Google Scholar

[8]

S.-N. Chow, J. Mallet-Paret and W. X. Shen, Travelling waves in lattice dynamical systems,, J. Differential Equations, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[9]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations,, Proc. Amer. Math. Soc., 132 (2004), 2433.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[10]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation,, Nonlinear Anal. TMA., 2 (1978), 721.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[11]

J. Fang, J. Wei and X.-Q. Zhao, Uniqueness of traveling waves for nonlocal lattice equations,, Proc. Amer. Math. Soc., 139 (2010), 1361.  doi: 10.1090/S0002-9939-2010-10540-3.  Google Scholar

[12]

J. Fang, J. Wei and X.-Q. Zhao, Spreading speed and travelling waves for non-monotone time-delayed lattice equations,, Proc. Roy. Math. Soc. Lond. A., 466 (2010), 1919.  doi: 10.1098/rspa.2009.0577.  Google Scholar

[13]

J.-S. Guo and Y.-C. Lin, Traveling wave solution for a lattice dynamical system with convolution type nonlinearity,, Discrete Contin. Dyn. Syst., 32 (2012), 101.  doi: 10.3934/dcds.2012.32.101.  Google Scholar

[14]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Comm. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[15]

S. W. Ma and X. F. Zou, Existence, uniqueness and stability of travelling waves in a discrete reaction-diffusion monostable equation with delay,, J. Differential Equations, 217 (2005), 54.  doi: 10.1016/j.jde.2005.05.004.  Google Scholar

[16]

S. W. Ma, P. X. Weng and X. F. Zou, Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation,, Nonlinear Analysis, 65 (2006), 1858.  doi: 10.1016/j.na.2005.10.042.  Google Scholar

[17]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spred and traveling waves for integral equations and delayed reaction-diffusion models,, J. Differential Equations, 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[18]

D. V. Widder, The Laplace Transform,, Princeton University Press, (1941).   Google Scholar

[19]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Math., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[20]

J. H. Wu and X. F. Zou, Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations,, J. Differential Equations, 135 (1997), 315.  doi: 10.1006/jdeq.1996.3232.  Google Scholar

[21]

Z. X. Yu, Uniqueness of critical traveling waves for nonlocal lattice equations with delays,, Proc. Amer. Math. Soc., 140 (2012), 3853.  doi: 10.1090/S0002-9939-2012-11225-0.  Google Scholar

[22]

P. A. Zhang and W. T. Li, Moonotonicity and uniqueness of traveling waves for a reaction-diffusion model with a quiescent stage,, Nonlinear Anal. TMA., 72 (2010), 2178.  doi: 10.1016/j.na.2009.10.016.  Google Scholar

[23]

B. Zinner, G. Harris and W. Hudson, Traveling wavefronts for the discrete Fisher's equation,, J. Differential Equations, 105 (1993), 46.  doi: 10.1006/jdeq.1993.1082.  Google Scholar

[1]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[11]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[20]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]