October  2015, 35(10): 5133-5152. doi: 10.3934/dcds.2015.35.5133

Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures

1. 

School of Mathematical Sciences, Peking University, Beijing, 100871, China

Received  December 2014 Revised  February 2015 Published  April 2015

We present here a construction of horseshoes for any $\mathcal{C}^{1+\alpha}$ mapping $f$ preserving an ergodic hyperbolic measure $\mu$ with $h_{\mu}(f)>0$ and then deduce that the exponential growth rate of the number of periodic points for any $\mathcal{C}^{1+\alpha}$ mapping $f$ is greater than or equal to $h_{\mu}(f)$. We also prove that the exponential growth rate of the number of hyperbolic periodic points is equal to the hyperbolic entropy. The hyperbolic entropy means the entropy resulting from hyperbolic measures.
Citation: Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133
References:
[1]

J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding,, Invent. Math., 140 (2000), 351.  doi: 10.1007/s002220000057.  Google Scholar

[2]

A. Avila, S. Crovisier and A. Wilkinson, Diffeomorphisms with positive metric entropy,, preprint, ().   Google Scholar

[3]

M. Benedicks and M. Misiurewicz, Absolutely continuous invariant measures for maps with flat tops,, Inst. Hautes Étides Sci. Publ. Math., 69 (1989), 203.   Google Scholar

[4]

J. Buzzi, On the entropy-expanding maps,, preprint., ().   Google Scholar

[5]

Y. M. Chung, Shadowing properties for non-invertible maps with hyperbolic measures,, Tokyo J. Math., 22 (1999), 145.  doi: 10.3836/tjm/1270041619.  Google Scholar

[6]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.   Google Scholar

[7]

K. Gelfert, Expanding repellers for non-uniformly expanding maps with singularities and criticalities,, Bull. Braz. Math. Soc., 41 (2010), 237.  doi: 10.1007/s00574-010-0012-1.  Google Scholar

[8]

K. Gelfert and C. Wolf, On the distribution of periodic orbits,, Discrete and Continuous Dynamical Systems, 26 (2010), 949.  doi: 10.3934/dcds.2010.26.949.  Google Scholar

[9]

K. Gelfert and C. Wolf, Topological pressure via saddle orbits,, Trans. Amer. Math. Soc., 360 (2008), 545.  doi: 10.1090/S0002-9947-07-04407-8.  Google Scholar

[10]

A. Katok, Lyapunov exponents, entropy and periodic points of diffeomorphisms,, Publ. Math. IHES, 51 (1980), 137.   Google Scholar

[11]

A. Katok and L. Mendoza, Supplement to Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, 54 (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[12]

F. Ledrappier and J. M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. Dynam.Sys., 2 (1982), 203.  doi: 10.1017/S0143385700001528.  Google Scholar

[13]

F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,, Ergod. Th. and Dynam. Sys, 1 (1981), 77.   Google Scholar

[14]

Z. Lian and L. S. Young, Lyapunov exponents, periodic orbits and Horseshoes for mappings of Hilbert spaces,, Ann. Henri. Poincaré, 12 (2011), 1081.  doi: 10.1007/s00023-011-0100-9.  Google Scholar

[15]

C. Liang, G. Liao, W. Sun and X. Tian, Saturated set for nonuniformly hyperbolic systems,, preprint, ().   Google Scholar

[16]

G. Liao, W. Sun and X. Tian, Metric entropy and the number of periodic points,, Nonlinearity, 23 (2010), 1547.  doi: 10.1088/0951-7715/23/7/002.  Google Scholar

[17]

G. Liao, W. Sun and Y. Yang, Exponential rate of periodic points and metric entropy in nonuniformly hyperbolic systems,, preprint., ().   Google Scholar

[18]

P. Liu, Stability of orbit spaces of mappings,, Manuscripta Math., 93 (1997), 109.  doi: 10.1007/BF02677460.  Google Scholar

[19]

P. Liu, Pesin's entropy formula for mappings,, Nagoya Math. J., 150 (1998), 197.   Google Scholar

[20]

R. Mañe, Lyapunov exponents and invariant manifolds for compact transformations,, in Geometric Dynamics, (1007), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[21]

R. Mañe and C. Pugh, Stability of endomorphisms,, in Dynamical Systems Warwick 1974, (1974), 175.   Google Scholar

[22]

A. Manning, Topological entropy and the first homology group in Dynamical systems,, in Dynamical Systems Warwick 1974, (1974), 185.   Google Scholar

[23]

M. Misiurewicz and F. Przytcycki, Topological entropy and degree of smooth mappings,, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys., 25 (1977), 573.   Google Scholar

[24]

S. Y. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Math., (1706).   Google Scholar

[25]

F. Przytycki, Anosov endomorphisms,, Studia Math., 58 (1976), 249.   Google Scholar

[26]

C. Pugh and M. Shub, Ergodic attractors,, Trans. Amer. Math. Soc., 312 (1989), 1.  doi: 10.1090/S0002-9947-1989-0983869-1.  Google Scholar

[27]

C. Pugh and M. Shub, Periodic points on the 2-Sphere,, Discrete Contin. Dyn. Syst., 34 (2014), 1171.  doi: 10.3934/dcds.2014.34.1171.  Google Scholar

[28]

M. Qian, J. Xie and S. Zhu, Smooth Ergodic Theory for Endomorphisms,, Lecture Notes in Mathematics, (1978).   Google Scholar

[29]

D. Ruelle, An inequality for then entropy of differentiable maps,, Bol. Soc. Bras. Math., 9 (1978), 83.  doi: 10.1007/BF02584795.  Google Scholar

[30]

D. Ruelle, Characteristic exponents and invariant manifold in Hilbert space,, Ann. of Math., 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[31]

E. Sander, Homoclinic tangles for noninvertible maps,, Nonlinear Analysis, 41 (2000), 259.  doi: 10.1016/S0362-546X(98)00277-6.  Google Scholar

[32]

O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy,, Journal of The American Mathematical Society, 26 (2013), 341.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[33]

M. Shub, Dynamical systems, filtrations and entropy,, Bull. Amer.Math. Soc., 80 (1974), 27.  doi: 10.1090/S0002-9904-1974-13344-6.  Google Scholar

[34]

M. Shub and D. Sullivan, A remark on the lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[35]

M. Shub, All, most, some differentiable dynamical systems,, in International Congress of Mathematicians. Vol. III, (2006), 99.   Google Scholar

[36]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.  doi: 10.2307/2373276.  Google Scholar

show all references

References:
[1]

J. F. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding,, Invent. Math., 140 (2000), 351.  doi: 10.1007/s002220000057.  Google Scholar

[2]

A. Avila, S. Crovisier and A. Wilkinson, Diffeomorphisms with positive metric entropy,, preprint, ().   Google Scholar

[3]

M. Benedicks and M. Misiurewicz, Absolutely continuous invariant measures for maps with flat tops,, Inst. Hautes Étides Sci. Publ. Math., 69 (1989), 203.   Google Scholar

[4]

J. Buzzi, On the entropy-expanding maps,, preprint., ().   Google Scholar

[5]

Y. M. Chung, Shadowing properties for non-invertible maps with hyperbolic measures,, Tokyo J. Math., 22 (1999), 145.  doi: 10.3836/tjm/1270041619.  Google Scholar

[6]

Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms,, Hiroshima Math. J., 33 (2003), 189.   Google Scholar

[7]

K. Gelfert, Expanding repellers for non-uniformly expanding maps with singularities and criticalities,, Bull. Braz. Math. Soc., 41 (2010), 237.  doi: 10.1007/s00574-010-0012-1.  Google Scholar

[8]

K. Gelfert and C. Wolf, On the distribution of periodic orbits,, Discrete and Continuous Dynamical Systems, 26 (2010), 949.  doi: 10.3934/dcds.2010.26.949.  Google Scholar

[9]

K. Gelfert and C. Wolf, Topological pressure via saddle orbits,, Trans. Amer. Math. Soc., 360 (2008), 545.  doi: 10.1090/S0002-9947-07-04407-8.  Google Scholar

[10]

A. Katok, Lyapunov exponents, entropy and periodic points of diffeomorphisms,, Publ. Math. IHES, 51 (1980), 137.   Google Scholar

[11]

A. Katok and L. Mendoza, Supplement to Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, 54 (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[12]

F. Ledrappier and J. M. Strelcyn, A proof of the estimation from below in Pesin's entropy formula,, Ergod. Th. Dynam.Sys., 2 (1982), 203.  doi: 10.1017/S0143385700001528.  Google Scholar

[13]

F. Ledrappier, Some properties of absolutely continuous invariant measures on an interval,, Ergod. Th. and Dynam. Sys, 1 (1981), 77.   Google Scholar

[14]

Z. Lian and L. S. Young, Lyapunov exponents, periodic orbits and Horseshoes for mappings of Hilbert spaces,, Ann. Henri. Poincaré, 12 (2011), 1081.  doi: 10.1007/s00023-011-0100-9.  Google Scholar

[15]

C. Liang, G. Liao, W. Sun and X. Tian, Saturated set for nonuniformly hyperbolic systems,, preprint, ().   Google Scholar

[16]

G. Liao, W. Sun and X. Tian, Metric entropy and the number of periodic points,, Nonlinearity, 23 (2010), 1547.  doi: 10.1088/0951-7715/23/7/002.  Google Scholar

[17]

G. Liao, W. Sun and Y. Yang, Exponential rate of periodic points and metric entropy in nonuniformly hyperbolic systems,, preprint., ().   Google Scholar

[18]

P. Liu, Stability of orbit spaces of mappings,, Manuscripta Math., 93 (1997), 109.  doi: 10.1007/BF02677460.  Google Scholar

[19]

P. Liu, Pesin's entropy formula for mappings,, Nagoya Math. J., 150 (1998), 197.   Google Scholar

[20]

R. Mañe, Lyapunov exponents and invariant manifolds for compact transformations,, in Geometric Dynamics, (1007), 522.  doi: 10.1007/BFb0061433.  Google Scholar

[21]

R. Mañe and C. Pugh, Stability of endomorphisms,, in Dynamical Systems Warwick 1974, (1974), 175.   Google Scholar

[22]

A. Manning, Topological entropy and the first homology group in Dynamical systems,, in Dynamical Systems Warwick 1974, (1974), 185.   Google Scholar

[23]

M. Misiurewicz and F. Przytcycki, Topological entropy and degree of smooth mappings,, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys., 25 (1977), 573.   Google Scholar

[24]

S. Y. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes in Math., (1706).   Google Scholar

[25]

F. Przytycki, Anosov endomorphisms,, Studia Math., 58 (1976), 249.   Google Scholar

[26]

C. Pugh and M. Shub, Ergodic attractors,, Trans. Amer. Math. Soc., 312 (1989), 1.  doi: 10.1090/S0002-9947-1989-0983869-1.  Google Scholar

[27]

C. Pugh and M. Shub, Periodic points on the 2-Sphere,, Discrete Contin. Dyn. Syst., 34 (2014), 1171.  doi: 10.3934/dcds.2014.34.1171.  Google Scholar

[28]

M. Qian, J. Xie and S. Zhu, Smooth Ergodic Theory for Endomorphisms,, Lecture Notes in Mathematics, (1978).   Google Scholar

[29]

D. Ruelle, An inequality for then entropy of differentiable maps,, Bol. Soc. Bras. Math., 9 (1978), 83.  doi: 10.1007/BF02584795.  Google Scholar

[30]

D. Ruelle, Characteristic exponents and invariant manifold in Hilbert space,, Ann. of Math., 115 (1982), 243.  doi: 10.2307/1971392.  Google Scholar

[31]

E. Sander, Homoclinic tangles for noninvertible maps,, Nonlinear Analysis, 41 (2000), 259.  doi: 10.1016/S0362-546X(98)00277-6.  Google Scholar

[32]

O. M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy,, Journal of The American Mathematical Society, 26 (2013), 341.  doi: 10.1090/S0894-0347-2012-00758-9.  Google Scholar

[33]

M. Shub, Dynamical systems, filtrations and entropy,, Bull. Amer.Math. Soc., 80 (1974), 27.  doi: 10.1090/S0002-9904-1974-13344-6.  Google Scholar

[34]

M. Shub and D. Sullivan, A remark on the lefschetz fixed point formula for differentiable maps,, Topology, 13 (1974), 189.  doi: 10.1016/0040-9383(74)90009-3.  Google Scholar

[35]

M. Shub, All, most, some differentiable dynamical systems,, in International Congress of Mathematicians. Vol. III, (2006), 99.   Google Scholar

[36]

M. Shub, Endomorphisms of compact differentiable manifolds,, Amer. J. Math., 91 (1969), 175.  doi: 10.2307/2373276.  Google Scholar

[1]

Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089

[2]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[3]

Alexander Arbieto, Luciano Prudente. Uniqueness of equilibrium states for some partially hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 27-40. doi: 10.3934/dcds.2012.32.27

[4]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

[5]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[6]

François Ledrappier, Seonhee Lim. Volume entropy of hyperbolic buildings. Journal of Modern Dynamics, 2010, 4 (1) : 139-165. doi: 10.3934/jmd.2010.4.139

[7]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[8]

Shaobo Gan. A generalized shadowing lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 627-632. doi: 10.3934/dcds.2002.8.627

[9]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[10]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[11]

Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97

[12]

Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417

[13]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[14]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[15]

Anatole Katok. Hyperbolic measures and commuting maps in low dimension. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 397-411. doi: 10.3934/dcds.1996.2.397

[16]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[17]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

[18]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[19]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[20]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019032

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]