November  2015, 35(11): 5171-5184. doi: 10.3934/dcds.2015.35.5171

Global existence for the stochastic Degasperis-Procesi equation

1. 

School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. 

Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023

Received  March 2014 Revised  May 2014 Published  May 2015

This paper is concerned with the Cauchy problem of stochastic Degasperis-Procesi equation. Firstly, the local well-posedness for this system is established. Then the precise blow-up scenario for solutions to the system is derived. Finally, the gloabl well-posedness to the system is presented.
Citation: Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171
References:
[1]

R. Camassa and D. Holm, In integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[2]

Y. Chen, H. J. Gao and B. L. Guo, Well posedness for stochastic Camassa-Holm equation,, J. Differential Equations, 253 (2012), 2353.  doi: 10.1016/j.jde.2012.06.023.  Google Scholar

[3]

P. L. Chow, Stochastic Partial Differential Equation,, Chapman & Hall/CRC, (2007).   Google Scholar

[4]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 223 (2006), 60.  doi: 10.1016/j.jfa.2005.07.008.  Google Scholar

[5]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[6]

R. Danchin, Fourier Analysis Methods for PDEs,, Lecture Notes, (2003).   Google Scholar

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[8]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and Perturbation Theory (Rome, (1998), 23.   Google Scholar

[9]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dynam. Res., 33 (2003), 73.  doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[10]

J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457.  doi: 10.1016/j.jfa.2006.03.022.  Google Scholar

[11]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87.  doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[12]

J. Escher and J. Seiler, The periodic b-equation and Euler equations on the circle,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3405494.  Google Scholar

[13]

J. Feng and D. Nualart, Stochastic scalar conservation laws,, J. Funct. Anal., 255 (2008), 313.  doi: 10.1016/j.jfa.2008.02.004.  Google Scholar

[14]

F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation,, Invent. Math., 180 (2010), 1.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[15]

J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation,, SIAM J. Math. Anal., 20 (1989), 1388.  doi: 10.1137/0520091.  Google Scholar

[16]

D. Henry, Infinite propagation speed for the Degasperis-Procesi equation,, J. Math. Anal. Appl., 311 (2005), 755.  doi: 10.1016/j.jmaa.2005.03.001.  Google Scholar

[17]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323.  doi: 10.1137/S1111111102410943.  Google Scholar

[18]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE,, Phys. Lett. A, 308 (2003), 437.  doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[19]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63.  doi: 10.1017/S0022112001007224.  Google Scholar

[20]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, Duke Math. J., 71 (1993), 1.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[21]

J. U. Kim, On the Cauchy problem for the transport equation with random noise,, J. Funct. Anal., 259 (2010), 3328.  doi: 10.1016/j.jfa.2010.08.017.  Google Scholar

[22]

J. U. Kim, On the stochastic quasi-linear symmertic hyperbolic system,, J. Differential Equations, 250 (2011), 1650.  doi: 10.1016/j.jde.2010.09.025.  Google Scholar

[23]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation,, J. Math. Anal. Appl., 306 (2005), 72.  doi: 10.1016/j.jmaa.2004.11.038.  Google Scholar

[24]

Z. W. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation,, Comm. Pure Appl. Math., 62 (2009), 125.  doi: 10.1002/cpa.20239.  Google Scholar

[25]

Y. Liu and Z. Y. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[26]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241.  doi: 10.1088/0266-5611/19/6/001.  Google Scholar

[27]

Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit,, Inverse Problems, 21 (2005), 1553.  doi: 10.1088/0266-5611/21/5/004.  Google Scholar

[28]

O. G. Mustafa, A note on the Degasperis-Procesi equation,, J. Nonlinear Math. Phys., 12 (2005), 10.  doi: 10.2991/jnmp.2005.12.1.2.  Google Scholar

[29]

T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equation,, Amer. J. Math., 123 (2001), 839.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, Second edition, (1995).   Google Scholar

[31]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059.  doi: 10.1016/j.chaos.2003.09.043.  Google Scholar

[32]

Z. Y. Yin, On the Cauchy problem for an intergrable equation with peakon solutions,, Illinois J. Math., 47 (2003), 649.   Google Scholar

[33]

Z. Y. Yin, Global existence for a new periodic integrable equation,, J. Math. Anal. Appl., 283 (2003), 129.  doi: 10.1016/S0022-247X(03)00250-6.  Google Scholar

[34]

Z. Y. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions,, J. Funct. Anal., 212 (2004), 182.  doi: 10.1016/j.jfa.2003.07.010.  Google Scholar

[35]

Z. Y. Yin, Global solutions to a new integrable equation with peakons,, Indiana Univ. Math. J., 53 (2004), 1189.  doi: 10.1512/iumj.2004.53.2479.  Google Scholar

show all references

References:
[1]

R. Camassa and D. Holm, In integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[2]

Y. Chen, H. J. Gao and B. L. Guo, Well posedness for stochastic Camassa-Holm equation,, J. Differential Equations, 253 (2012), 2353.  doi: 10.1016/j.jde.2012.06.023.  Google Scholar

[3]

P. L. Chow, Stochastic Partial Differential Equation,, Chapman & Hall/CRC, (2007).   Google Scholar

[4]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 223 (2006), 60.  doi: 10.1016/j.jfa.2005.07.008.  Google Scholar

[5]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[6]

R. Danchin, Fourier Analysis Methods for PDEs,, Lecture Notes, (2003).   Google Scholar

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[8]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and Perturbation Theory (Rome, (1998), 23.   Google Scholar

[9]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dynam. Res., 33 (2003), 73.  doi: 10.1016/S0169-5983(03)00046-7.  Google Scholar

[10]

J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457.  doi: 10.1016/j.jfa.2006.03.022.  Google Scholar

[11]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87.  doi: 10.1512/iumj.2007.56.3040.  Google Scholar

[12]

J. Escher and J. Seiler, The periodic b-equation and Euler equations on the circle,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3405494.  Google Scholar

[13]

J. Feng and D. Nualart, Stochastic scalar conservation laws,, J. Funct. Anal., 255 (2008), 313.  doi: 10.1016/j.jfa.2008.02.004.  Google Scholar

[14]

F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation,, Invent. Math., 180 (2010), 1.  doi: 10.1007/s00222-009-0224-4.  Google Scholar

[15]

J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation,, SIAM J. Math. Anal., 20 (1989), 1388.  doi: 10.1137/0520091.  Google Scholar

[16]

D. Henry, Infinite propagation speed for the Degasperis-Procesi equation,, J. Math. Anal. Appl., 311 (2005), 755.  doi: 10.1016/j.jmaa.2005.03.001.  Google Scholar

[17]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323.  doi: 10.1137/S1111111102410943.  Google Scholar

[18]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE,, Phys. Lett. A, 308 (2003), 437.  doi: 10.1016/S0375-9601(03)00114-2.  Google Scholar

[19]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63.  doi: 10.1017/S0022112001007224.  Google Scholar

[20]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, Duke Math. J., 71 (1993), 1.  doi: 10.1215/S0012-7094-93-07101-3.  Google Scholar

[21]

J. U. Kim, On the Cauchy problem for the transport equation with random noise,, J. Funct. Anal., 259 (2010), 3328.  doi: 10.1016/j.jfa.2010.08.017.  Google Scholar

[22]

J. U. Kim, On the stochastic quasi-linear symmertic hyperbolic system,, J. Differential Equations, 250 (2011), 1650.  doi: 10.1016/j.jde.2010.09.025.  Google Scholar

[23]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation,, J. Math. Anal. Appl., 306 (2005), 72.  doi: 10.1016/j.jmaa.2004.11.038.  Google Scholar

[24]

Z. W. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation,, Comm. Pure Appl. Math., 62 (2009), 125.  doi: 10.1002/cpa.20239.  Google Scholar

[25]

Y. Liu and Z. Y. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801.  doi: 10.1007/s00220-006-0082-5.  Google Scholar

[26]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241.  doi: 10.1088/0266-5611/19/6/001.  Google Scholar

[27]

Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit,, Inverse Problems, 21 (2005), 1553.  doi: 10.1088/0266-5611/21/5/004.  Google Scholar

[28]

O. G. Mustafa, A note on the Degasperis-Procesi equation,, J. Nonlinear Math. Phys., 12 (2005), 10.  doi: 10.2991/jnmp.2005.12.1.2.  Google Scholar

[29]

T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equation,, Amer. J. Math., 123 (2001), 839.  doi: 10.1353/ajm.2001.0035.  Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, Second edition, (1995).   Google Scholar

[31]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059.  doi: 10.1016/j.chaos.2003.09.043.  Google Scholar

[32]

Z. Y. Yin, On the Cauchy problem for an intergrable equation with peakon solutions,, Illinois J. Math., 47 (2003), 649.   Google Scholar

[33]

Z. Y. Yin, Global existence for a new periodic integrable equation,, J. Math. Anal. Appl., 283 (2003), 129.  doi: 10.1016/S0022-247X(03)00250-6.  Google Scholar

[34]

Z. Y. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions,, J. Funct. Anal., 212 (2004), 182.  doi: 10.1016/j.jfa.2003.07.010.  Google Scholar

[35]

Z. Y. Yin, Global solutions to a new integrable equation with peakons,, Indiana Univ. Math. J., 53 (2004), 1189.  doi: 10.1512/iumj.2004.53.2479.  Google Scholar

[1]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[2]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[3]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[5]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[8]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[11]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[12]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[13]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[17]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]