November  2015, 35(11): 5171-5184. doi: 10.3934/dcds.2015.35.5171

Global existence for the stochastic Degasperis-Procesi equation

1. 

School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. 

Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023

Received  March 2014 Revised  May 2014 Published  May 2015

This paper is concerned with the Cauchy problem of stochastic Degasperis-Procesi equation. Firstly, the local well-posedness for this system is established. Then the precise blow-up scenario for solutions to the system is derived. Finally, the gloabl well-posedness to the system is presented.
Citation: Yong Chen, Hongjun Gao. Global existence for the stochastic Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5171-5184. doi: 10.3934/dcds.2015.35.5171
References:
[1]

R. Camassa and D. Holm, In integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[2]

Y. Chen, H. J. Gao and B. L. Guo, Well posedness for stochastic Camassa-Holm equation,, J. Differential Equations, 253 (2012), 2353. doi: 10.1016/j.jde.2012.06.023. Google Scholar

[3]

P. L. Chow, Stochastic Partial Differential Equation,, Chapman & Hall/CRC, (2007). Google Scholar

[4]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 223 (2006), 60. doi: 10.1016/j.jfa.2005.07.008. Google Scholar

[5]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[6]

R. Danchin, Fourier Analysis Methods for PDEs,, Lecture Notes, (2003). Google Scholar

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[8]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and Perturbation Theory (Rome, (1998), 23. Google Scholar

[9]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dynam. Res., 33 (2003), 73. doi: 10.1016/S0169-5983(03)00046-7. Google Scholar

[10]

J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457. doi: 10.1016/j.jfa.2006.03.022. Google Scholar

[11]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87. doi: 10.1512/iumj.2007.56.3040. Google Scholar

[12]

J. Escher and J. Seiler, The periodic b-equation and Euler equations on the circle,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3405494. Google Scholar

[13]

J. Feng and D. Nualart, Stochastic scalar conservation laws,, J. Funct. Anal., 255 (2008), 313. doi: 10.1016/j.jfa.2008.02.004. Google Scholar

[14]

F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation,, Invent. Math., 180 (2010), 1. doi: 10.1007/s00222-009-0224-4. Google Scholar

[15]

J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation,, SIAM J. Math. Anal., 20 (1989), 1388. doi: 10.1137/0520091. Google Scholar

[16]

D. Henry, Infinite propagation speed for the Degasperis-Procesi equation,, J. Math. Anal. Appl., 311 (2005), 755. doi: 10.1016/j.jmaa.2005.03.001. Google Scholar

[17]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323. doi: 10.1137/S1111111102410943. Google Scholar

[18]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE,, Phys. Lett. A, 308 (2003), 437. doi: 10.1016/S0375-9601(03)00114-2. Google Scholar

[19]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[20]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, Duke Math. J., 71 (1993), 1. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[21]

J. U. Kim, On the Cauchy problem for the transport equation with random noise,, J. Funct. Anal., 259 (2010), 3328. doi: 10.1016/j.jfa.2010.08.017. Google Scholar

[22]

J. U. Kim, On the stochastic quasi-linear symmertic hyperbolic system,, J. Differential Equations, 250 (2011), 1650. doi: 10.1016/j.jde.2010.09.025. Google Scholar

[23]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation,, J. Math. Anal. Appl., 306 (2005), 72. doi: 10.1016/j.jmaa.2004.11.038. Google Scholar

[24]

Z. W. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation,, Comm. Pure Appl. Math., 62 (2009), 125. doi: 10.1002/cpa.20239. Google Scholar

[25]

Y. Liu and Z. Y. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801. doi: 10.1007/s00220-006-0082-5. Google Scholar

[26]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241. doi: 10.1088/0266-5611/19/6/001. Google Scholar

[27]

Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit,, Inverse Problems, 21 (2005), 1553. doi: 10.1088/0266-5611/21/5/004. Google Scholar

[28]

O. G. Mustafa, A note on the Degasperis-Procesi equation,, J. Nonlinear Math. Phys., 12 (2005), 10. doi: 10.2991/jnmp.2005.12.1.2. Google Scholar

[29]

T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equation,, Amer. J. Math., 123 (2001), 839. doi: 10.1353/ajm.2001.0035. Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, Second edition, (1995). Google Scholar

[31]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059. doi: 10.1016/j.chaos.2003.09.043. Google Scholar

[32]

Z. Y. Yin, On the Cauchy problem for an intergrable equation with peakon solutions,, Illinois J. Math., 47 (2003), 649. Google Scholar

[33]

Z. Y. Yin, Global existence for a new periodic integrable equation,, J. Math. Anal. Appl., 283 (2003), 129. doi: 10.1016/S0022-247X(03)00250-6. Google Scholar

[34]

Z. Y. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions,, J. Funct. Anal., 212 (2004), 182. doi: 10.1016/j.jfa.2003.07.010. Google Scholar

[35]

Z. Y. Yin, Global solutions to a new integrable equation with peakons,, Indiana Univ. Math. J., 53 (2004), 1189. doi: 10.1512/iumj.2004.53.2479. Google Scholar

show all references

References:
[1]

R. Camassa and D. Holm, In integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[2]

Y. Chen, H. J. Gao and B. L. Guo, Well posedness for stochastic Camassa-Holm equation,, J. Differential Equations, 253 (2012), 2353. doi: 10.1016/j.jde.2012.06.023. Google Scholar

[3]

P. L. Chow, Stochastic Partial Differential Equation,, Chapman & Hall/CRC, (2007). Google Scholar

[4]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 223 (2006), 60. doi: 10.1016/j.jfa.2005.07.008. Google Scholar

[5]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[6]

R. Danchin, Fourier Analysis Methods for PDEs,, Lecture Notes, (2003). Google Scholar

[7]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[8]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and Perturbation Theory (Rome, (1998), 23. Google Scholar

[9]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dynam. Res., 33 (2003), 73. doi: 10.1016/S0169-5983(03)00046-7. Google Scholar

[10]

J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457. doi: 10.1016/j.jfa.2006.03.022. Google Scholar

[11]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87. doi: 10.1512/iumj.2007.56.3040. Google Scholar

[12]

J. Escher and J. Seiler, The periodic b-equation and Euler equations on the circle,, J. Math. Phys., 51 (2010). doi: 10.1063/1.3405494. Google Scholar

[13]

J. Feng and D. Nualart, Stochastic scalar conservation laws,, J. Funct. Anal., 255 (2008), 313. doi: 10.1016/j.jfa.2008.02.004. Google Scholar

[14]

F. Flandoli, M. Gubinelli and E. Priola, Well-posedness of the transport equation by stochastic perturbation,, Invent. Math., 180 (2010), 1. doi: 10.1007/s00222-009-0224-4. Google Scholar

[15]

J. Ginibre and Y. Tsutsumi, Uniqueness of solutions for the generalized Korteweg-de Vries equation,, SIAM J. Math. Anal., 20 (1989), 1388. doi: 10.1137/0520091. Google Scholar

[16]

D. Henry, Infinite propagation speed for the Degasperis-Procesi equation,, J. Math. Anal. Appl., 311 (2005), 755. doi: 10.1016/j.jmaa.2005.03.001. Google Scholar

[17]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323. doi: 10.1137/S1111111102410943. Google Scholar

[18]

D. D. Holm and M. F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1-1 nonlinear evolutionary PDE,, Phys. Lett. A, 308 (2003), 437. doi: 10.1016/S0375-9601(03)00114-2. Google Scholar

[19]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[20]

C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices,, Duke Math. J., 71 (1993), 1. doi: 10.1215/S0012-7094-93-07101-3. Google Scholar

[21]

J. U. Kim, On the Cauchy problem for the transport equation with random noise,, J. Funct. Anal., 259 (2010), 3328. doi: 10.1016/j.jfa.2010.08.017. Google Scholar

[22]

J. U. Kim, On the stochastic quasi-linear symmertic hyperbolic system,, J. Differential Equations, 250 (2011), 1650. doi: 10.1016/j.jde.2010.09.025. Google Scholar

[23]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation,, J. Math. Anal. Appl., 306 (2005), 72. doi: 10.1016/j.jmaa.2004.11.038. Google Scholar

[24]

Z. W. Lin and Y. Liu, Stability of peakons for the Degasperis-Procesi equation,, Comm. Pure Appl. Math., 62 (2009), 125. doi: 10.1002/cpa.20239. Google Scholar

[25]

Y. Liu and Z. Y. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation,, Comm. Math. Phys., 267 (2006), 801. doi: 10.1007/s00220-006-0082-5. Google Scholar

[26]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241. doi: 10.1088/0266-5611/19/6/001. Google Scholar

[27]

Y. Matsuno, Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit,, Inverse Problems, 21 (2005), 1553. doi: 10.1088/0266-5611/21/5/004. Google Scholar

[28]

O. G. Mustafa, A note on the Degasperis-Procesi equation,, J. Nonlinear Math. Phys., 12 (2005), 10. doi: 10.2991/jnmp.2005.12.1.2. Google Scholar

[29]

T. Tao, Multilinear weighted convolution of $L^{2}$ functions, and applications to nonlinear dispersive equation,, Amer. J. Math., 123 (2001), 839. doi: 10.1353/ajm.2001.0035. Google Scholar

[30]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators,, Second edition, (1995). Google Scholar

[31]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059. doi: 10.1016/j.chaos.2003.09.043. Google Scholar

[32]

Z. Y. Yin, On the Cauchy problem for an intergrable equation with peakon solutions,, Illinois J. Math., 47 (2003), 649. Google Scholar

[33]

Z. Y. Yin, Global existence for a new periodic integrable equation,, J. Math. Anal. Appl., 283 (2003), 129. doi: 10.1016/S0022-247X(03)00250-6. Google Scholar

[34]

Z. Y. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions,, J. Funct. Anal., 212 (2004), 182. doi: 10.1016/j.jfa.2003.07.010. Google Scholar

[35]

Z. Y. Yin, Global solutions to a new integrable equation with peakons,, Indiana Univ. Math. J., 53 (2004), 1189. doi: 10.1512/iumj.2004.53.2479. Google Scholar

[1]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[2]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[3]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[4]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[5]

Fei Guo, Bao-Feng Feng, Hongjun Gao, Yue Liu. On the initial-value problem to the Degasperis-Procesi equation with linear dispersion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1269-1290. doi: 10.3934/dcds.2010.26.1269

[6]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[7]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[8]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[9]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[10]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[11]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[12]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[13]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[14]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[15]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[16]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[17]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[18]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[19]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[20]

Pablo Álvarez-Caudevilla, V. A. Galaktionov. Blow-up scaling and global behaviour of solutions of the bi-Laplace equation via pencil operators. Communications on Pure & Applied Analysis, 2016, 15 (1) : 261-286. doi: 10.3934/cpaa.2016.15.261

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]