November  2015, 35(11): 5185-5202. doi: 10.3934/dcds.2015.35.5185

The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator

1. 

Institut du Risque et de l'Assurance, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France, France

2. 

School of Mathematical Sciences, University of Fudan, Handan Road 220, 200433, Shanghai, China

Received  November 2012 Revised  May 2014 Published  May 2015

We prove the existence and uniqueness of solution of the obstacle problem for quasilinear Stochastic PDEs with non-homogeneous second order operator. Our method is based on analytical technics coming from the parabolic potential theory. The solution is expressed as a pair $(u,\nu)$ where $u$ is a predictable continuous process which takes values in a proper Sobolev space and $\nu$ is a random regular measure satisfying minimal Skohorod condition. Moreover, we establish a maximum principle for local solutions of such class of stochastic PDEs. The proofs are based on a version of Itô's formula and estimates for the positive part of a local solution which is non-positive on the lateral boundary.
Citation: Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185
References:
[1]

D. G. Aronson, On the Green's function for second order parabolic differential equations with discontinuous coefficients,, Bulletin of the American Mathematical Society, 69 (1963), 841. doi: 10.1090/S0002-9904-1963-11059-9. Google Scholar

[2]

D. G. Aronson, Non-negative solutions of linear parabolic equations,, Annali della Scuola Normale Superiore di Pisa, 22 (1968), 607. Google Scholar

[3]

V. Bally and A. Matoussi, Weak solutions for SPDE's and Backward Doubly SDE's,, Journal of Theoret. Probab., 14 (2001), 125. doi: 10.1023/A:1007825232513. Google Scholar

[4]

P. Charrier and G. M. Troianiello, Un résultat d'existence et de régularité pour les solutions fortes d'un problème unilatéral d'évolution avec obstacle dépendant du temps,, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975). Google Scholar

[5]

L. Denis and L. Stoïca, A general analytical result for non-linear SPDE's and applications,, Electronic Journal of Probability, 9 (2004), 674. doi: 10.1214/EJP.v9-223. Google Scholar

[6]

L. Denis, A. Matoussi and L. Stoïca, $L^p$ estimates for the uniform norm of solutions of quasilinear SPDE's,, Probability Theory Related Fields, 133 (2005), 437. doi: 10.1007/s00440-005-0436-5. Google Scholar

[7]

L. Denis, A. Matoussi and L. Stoïca, Maximum Principle for Parabolic SPDE's: First Approach,, Stochastic Partial Differential Equations and Applications VIII in the series Quaderni di Matematica del Dipartimento di Matematica della Seconda Università di Napoli, (2011). Google Scholar

[8]

L. Denis, A. Matoussi and L. Stoïca, Maximum principle and comparison theorem for quasi-linear stochastic PDE's,, Electronic Journal of Probability, 14 (2009), 500. doi: 10.1214/EJP.v14-629. Google Scholar

[9]

L. Denis and A. Matoussi, Maximum Principle for quasilinear SPDE's on a bounded domain without regularity assumptions,, Stochastic Processes and Their Applications, 123 (2013), 1104. doi: 10.1016/j.spa.2012.10.005. Google Scholar

[10]

L. Denis, A. Matoussi and J. Zhang, The obstacle problem for quasilinear stochastic PDEs: Analytical approach,, The Annals of Probability, 42 (2014), 865. doi: 10.1214/12-AOP805. Google Scholar

[11]

L. Denis, A. Matoussi and J. Zhang, Maximum principle for quasilinear SPDEs with obstacle,, Electronic Journal of Probability, 19 (2014), 1. doi: 10.1214/EJP.v19-2716. Google Scholar

[12]

C. Donati-Martin and E. Pardoux, White noise driven SPDEs with reflection,, Probability Theory Related Fields, 95 (1993), 1. doi: 10.1007/BF01197335. Google Scholar

[13]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE and related obstacle problems for PDEs,, The Annals of Probability, 25 (1997), 702. doi: 10.1214/aop/1024404416. Google Scholar

[14]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[15]

K. H. Kim, An Lp-theory of SPDEs of divergence form on Lipschitz domains,, Journal of Theoretical Probability, 22 (2009), 220. doi: 10.1007/s10959-008-0170-x. Google Scholar

[16]

T. Klimsiak, Reflected BSDEs and obstacle problem for semilinear PDEs in divergence form,, Stochastic Processes and their Applications, 122 (2012), 134. doi: 10.1016/j.spa.2011.10.001. Google Scholar

[17]

N. V. Krylov, An analytic approach to SPDEs,, in Stochastic Partial Differential Equations: Six Perspectives, (1999), 185. doi: 10.1090/surv/064/05. Google Scholar

[18]

N. V. Krylov, Maximum principle of SPDEs and its applications,, in Stochastic Differential Equations: Theory and Applications (eds. P. Baxendale and S. Lototsky), (2007), 311. doi: 10.1142/9789812770639_0012. Google Scholar

[19]

J. L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications,, Dunod, (1968). Google Scholar

[20]

A. Matoussi and M. Xu, Sobolev solution for semilinear PDE with obstacle under monotonicity condition,, Electronic Journal of Probability, 13 (2008), 1035. doi: 10.1214/EJP.v13-522. Google Scholar

[21]

A. Matoussi and L. Stoïca, The obstacle problem for quasilinear stochastic PDE's,, The Annals of Probability, 38 (2010), 1143. doi: 10.1214/09-AOP507. Google Scholar

[22]

F. Mignot and J. P. Puel, Inéquations d'évolution paraboliques avec convexes dépendant du temps. Applications aux inéquations quasi-variationnelles d'évolution,, Arch. for Rat. Mech. and Ana., 64 (1977), 59. doi: 10.1007/BF00280179. Google Scholar

[23]

D. Nualart and E. Pardoux, White noise driven quasilinear SPDEs with reflection,, Probability Theory and Related Fields, 93 (1992), 77. doi: 10.1007/BF01195389. Google Scholar

[24]

M. Pierre, Problèmes d'Evolution avec Contraintes Unilaterales et Potentiels Parabolique,, Comm. in Partial Differential Equations, 4 (1979), 1149. doi: 10.1080/03605307908820124. Google Scholar

[25]

M. Pierre, Représentant précis d'un potentiel parabolique,, in Séminaire de Théorie du Potentiel, (1980), 186. Google Scholar

[26]

F. Riesz and B. Nagy, Functional Analysis,, Dover, (1990). Google Scholar

[27]

M. Sanz and P. Vuillermot, Equivalence and Hölder Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations,, Ann. I. H. Poincaré, 39 (2003), 703. doi: 10.1016/S0246-0203(03)00015-3. Google Scholar

[28]

T. G. Xu and T. S. Zhang, White noise driven SPDEs with reflection: Existence, uniqueness and large deviation principles,, Stochatic Processes and Their Applications, 119 (2009), 3453. doi: 10.1016/j.spa.2009.06.005. Google Scholar

show all references

References:
[1]

D. G. Aronson, On the Green's function for second order parabolic differential equations with discontinuous coefficients,, Bulletin of the American Mathematical Society, 69 (1963), 841. doi: 10.1090/S0002-9904-1963-11059-9. Google Scholar

[2]

D. G. Aronson, Non-negative solutions of linear parabolic equations,, Annali della Scuola Normale Superiore di Pisa, 22 (1968), 607. Google Scholar

[3]

V. Bally and A. Matoussi, Weak solutions for SPDE's and Backward Doubly SDE's,, Journal of Theoret. Probab., 14 (2001), 125. doi: 10.1023/A:1007825232513. Google Scholar

[4]

P. Charrier and G. M. Troianiello, Un résultat d'existence et de régularité pour les solutions fortes d'un problème unilatéral d'évolution avec obstacle dépendant du temps,, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975). Google Scholar

[5]

L. Denis and L. Stoïca, A general analytical result for non-linear SPDE's and applications,, Electronic Journal of Probability, 9 (2004), 674. doi: 10.1214/EJP.v9-223. Google Scholar

[6]

L. Denis, A. Matoussi and L. Stoïca, $L^p$ estimates for the uniform norm of solutions of quasilinear SPDE's,, Probability Theory Related Fields, 133 (2005), 437. doi: 10.1007/s00440-005-0436-5. Google Scholar

[7]

L. Denis, A. Matoussi and L. Stoïca, Maximum Principle for Parabolic SPDE's: First Approach,, Stochastic Partial Differential Equations and Applications VIII in the series Quaderni di Matematica del Dipartimento di Matematica della Seconda Università di Napoli, (2011). Google Scholar

[8]

L. Denis, A. Matoussi and L. Stoïca, Maximum principle and comparison theorem for quasi-linear stochastic PDE's,, Electronic Journal of Probability, 14 (2009), 500. doi: 10.1214/EJP.v14-629. Google Scholar

[9]

L. Denis and A. Matoussi, Maximum Principle for quasilinear SPDE's on a bounded domain without regularity assumptions,, Stochastic Processes and Their Applications, 123 (2013), 1104. doi: 10.1016/j.spa.2012.10.005. Google Scholar

[10]

L. Denis, A. Matoussi and J. Zhang, The obstacle problem for quasilinear stochastic PDEs: Analytical approach,, The Annals of Probability, 42 (2014), 865. doi: 10.1214/12-AOP805. Google Scholar

[11]

L. Denis, A. Matoussi and J. Zhang, Maximum principle for quasilinear SPDEs with obstacle,, Electronic Journal of Probability, 19 (2014), 1. doi: 10.1214/EJP.v19-2716. Google Scholar

[12]

C. Donati-Martin and E. Pardoux, White noise driven SPDEs with reflection,, Probability Theory Related Fields, 95 (1993), 1. doi: 10.1007/BF01197335. Google Scholar

[13]

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE and related obstacle problems for PDEs,, The Annals of Probability, 25 (1997), 702. doi: 10.1214/aop/1024404416. Google Scholar

[14]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[15]

K. H. Kim, An Lp-theory of SPDEs of divergence form on Lipschitz domains,, Journal of Theoretical Probability, 22 (2009), 220. doi: 10.1007/s10959-008-0170-x. Google Scholar

[16]

T. Klimsiak, Reflected BSDEs and obstacle problem for semilinear PDEs in divergence form,, Stochastic Processes and their Applications, 122 (2012), 134. doi: 10.1016/j.spa.2011.10.001. Google Scholar

[17]

N. V. Krylov, An analytic approach to SPDEs,, in Stochastic Partial Differential Equations: Six Perspectives, (1999), 185. doi: 10.1090/surv/064/05. Google Scholar

[18]

N. V. Krylov, Maximum principle of SPDEs and its applications,, in Stochastic Differential Equations: Theory and Applications (eds. P. Baxendale and S. Lototsky), (2007), 311. doi: 10.1142/9789812770639_0012. Google Scholar

[19]

J. L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications,, Dunod, (1968). Google Scholar

[20]

A. Matoussi and M. Xu, Sobolev solution for semilinear PDE with obstacle under monotonicity condition,, Electronic Journal of Probability, 13 (2008), 1035. doi: 10.1214/EJP.v13-522. Google Scholar

[21]

A. Matoussi and L. Stoïca, The obstacle problem for quasilinear stochastic PDE's,, The Annals of Probability, 38 (2010), 1143. doi: 10.1214/09-AOP507. Google Scholar

[22]

F. Mignot and J. P. Puel, Inéquations d'évolution paraboliques avec convexes dépendant du temps. Applications aux inéquations quasi-variationnelles d'évolution,, Arch. for Rat. Mech. and Ana., 64 (1977), 59. doi: 10.1007/BF00280179. Google Scholar

[23]

D. Nualart and E. Pardoux, White noise driven quasilinear SPDEs with reflection,, Probability Theory and Related Fields, 93 (1992), 77. doi: 10.1007/BF01195389. Google Scholar

[24]

M. Pierre, Problèmes d'Evolution avec Contraintes Unilaterales et Potentiels Parabolique,, Comm. in Partial Differential Equations, 4 (1979), 1149. doi: 10.1080/03605307908820124. Google Scholar

[25]

M. Pierre, Représentant précis d'un potentiel parabolique,, in Séminaire de Théorie du Potentiel, (1980), 186. Google Scholar

[26]

F. Riesz and B. Nagy, Functional Analysis,, Dover, (1990). Google Scholar

[27]

M. Sanz and P. Vuillermot, Equivalence and Hölder Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations,, Ann. I. H. Poincaré, 39 (2003), 703. doi: 10.1016/S0246-0203(03)00015-3. Google Scholar

[28]

T. G. Xu and T. S. Zhang, White noise driven SPDEs with reflection: Existence, uniqueness and large deviation principles,, Stochatic Processes and Their Applications, 119 (2009), 3453. doi: 10.1016/j.spa.2009.06.005. Google Scholar

[1]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[2]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[3]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[4]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[5]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[6]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[7]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[8]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[9]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[10]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[11]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[12]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[13]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[14]

Jonathan C. Mattingly, Etienne Pardoux. Invariant measure selection by noise. An example. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4223-4257. doi: 10.3934/dcds.2014.34.4223

[15]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[16]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[17]

Lars Grüne, Peter E. Kloeden, Stefan Siegmund, Fabian R. Wirth. Lyapunov's second method for nonautonomous differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 375-403. doi: 10.3934/dcds.2007.18.375

[18]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[19]

Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731

[20]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]