\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator

Abstract Related Papers Cited by
  • We prove the existence and uniqueness of solution of the obstacle problem for quasilinear Stochastic PDEs with non-homogeneous second order operator. Our method is based on analytical technics coming from the parabolic potential theory. The solution is expressed as a pair $(u,\nu)$ where $u$ is a predictable continuous process which takes values in a proper Sobolev space and $\nu$ is a random regular measure satisfying minimal Skohorod condition. Moreover, we establish a maximum principle for local solutions of such class of stochastic PDEs. The proofs are based on a version of Itô's formula and estimates for the positive part of a local solution which is non-positive on the lateral boundary.
    Mathematics Subject Classification: 60H15, 35R60, 31B150.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson, On the Green's function for second order parabolic differential equations with discontinuous coefficients, Bulletin of the American Mathematical Society, 69 (1963), 841-847.doi: 10.1090/S0002-9904-1963-11059-9.

    [2]

    D. G. Aronson, Non-negative solutions of linear parabolic equations, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 3, 22 (1968), 607-694.

    [3]

    V. Bally and A. Matoussi, Weak solutions for SPDE's and Backward Doubly SDE's, Journal of Theoret. Probab., 14 (2001), 125-164.doi: 10.1023/A:1007825232513.

    [4]

    P. Charrier and G. M. Troianiello, Un résultat d'existence et de régularité pour les solutions fortes d'un problème unilatéral d'évolution avec obstacle dépendant du temps, C. R. Acad. Sci. Paris Sér. A-B, 281 (1975), A621-A623.

    [5]

    L. Denis and L. Stoïca, A general analytical result for non-linear SPDE's and applications, Electronic Journal of Probability, 9 (2004), 674-709.doi: 10.1214/EJP.v9-223.

    [6]

    L. Denis, A. Matoussi and L. Stoïca, $L^p$ estimates for the uniform norm of solutions of quasilinear SPDE's, Probability Theory Related Fields, 133 (2005), 437-463.doi: 10.1007/s00440-005-0436-5.

    [7]

    L. Denis, A. Matoussi and L. Stoïca, Maximum Principle for Parabolic SPDE's: First Approach, Stochastic Partial Differential Equations and Applications VIII in the series Quaderni di Matematica del Dipartimento di Matematica della Seconda Università di Napoli, 2011.

    [8]

    L. Denis, A. Matoussi and L. Stoïca, Maximum principle and comparison theorem for quasi-linear stochastic PDE's, Electronic Journal of Probability, 14 (2009), 500-530.doi: 10.1214/EJP.v14-629.

    [9]

    L. Denis and A. Matoussi, Maximum Principle for quasilinear SPDE's on a bounded domain without regularity assumptions, Stochastic Processes and Their Applications, 123 (2013), 1104-1137.doi: 10.1016/j.spa.2012.10.005.

    [10]

    L. Denis, A. Matoussi and J. Zhang, The obstacle problem for quasilinear stochastic PDEs: Analytical approach, The Annals of Probability, 42 (2014), 865-905.doi: 10.1214/12-AOP805.

    [11]

    L. Denis, A. Matoussi and J. Zhang, Maximum principle for quasilinear SPDEs with obstacle, Electronic Journal of Probability, 19 (2014), 1-32.doi: 10.1214/EJP.v19-2716.

    [12]

    C. Donati-Martin and E. Pardoux, White noise driven SPDEs with reflection, Probability Theory Related Fields, 95 (1993), 1-24.doi: 10.1007/BF01197335.

    [13]

    N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE and related obstacle problems for PDEs, The Annals of Probability, 25 (1997), 702-737.doi: 10.1214/aop/1024404416.

    [14]

    N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Mathematical Finance, 7 (1997), 1-71.doi: 10.1111/1467-9965.00022.

    [15]

    K. H. Kim, An Lp-theory of SPDEs of divergence form on Lipschitz domains, Journal of Theoretical Probability, 22 (2009), 220-238.doi: 10.1007/s10959-008-0170-x.

    [16]

    T. Klimsiak, Reflected BSDEs and obstacle problem for semilinear PDEs in divergence form, Stochastic Processes and their Applications, 122 (2012), 134-169.doi: 10.1016/j.spa.2011.10.001.

    [17]

    N. V. Krylov, An analytic approach to SPDEs, in Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr., 64, Amer. Math. Soc., Providence, RI, 1999, 185-242.doi: 10.1090/surv/064/05.

    [18]

    N. V. Krylov, Maximum principle of SPDEs and its applications, in Stochastic Differential Equations: Theory and Applications (eds. P. Baxendale and S. Lototsky), Interdiscip. Math. Sci., 2, World Scientific, Hackensack, NJ, 2007, 311-338.doi: 10.1142/9789812770639_0012.

    [19]

    J. L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Dunod, Paris, 1968.

    [20]

    A. Matoussi and M. Xu, Sobolev solution for semilinear PDE with obstacle under monotonicity condition, Electronic Journal of Probability, 13 (2008), 1035-1067.doi: 10.1214/EJP.v13-522.

    [21]

    A. Matoussi and L. Stoïca, The obstacle problem for quasilinear stochastic PDE's, The Annals of Probability, 38 (2010), 1143-1179.doi: 10.1214/09-AOP507.

    [22]

    F. Mignot and J. P. Puel, Inéquations d'évolution paraboliques avec convexes dépendant du temps. Applications aux inéquations quasi-variationnelles d'évolution, Arch. for Rat. Mech. and Ana., 64 (1977), 59-91.doi: 10.1007/BF00280179.

    [23]

    D. Nualart and E. Pardoux, White noise driven quasilinear SPDEs with reflection, Probability Theory and Related Fields, 93 (1992), 77-89.doi: 10.1007/BF01195389.

    [24]

    M. Pierre, Problèmes d'Evolution avec Contraintes Unilaterales et Potentiels Parabolique, Comm. in Partial Differential Equations, 4 (1979), 1149-1197.doi: 10.1080/03605307908820124.

    [25]

    M. Pierre, Représentant précis d'un potentiel parabolique, in Séminaire de Théorie du Potentiel, Paris, No. 5, Lecture Notes in Math., 814, Springer, Berlin, 1980, 186-228.

    [26]

    F. Riesz and B. Nagy, Functional Analysis, Dover, New York, 1990.

    [27]

    M. Sanz and P. Vuillermot, Equivalence and Hölder Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations, Ann. I. H. Poincaré, 39 (2003), 703-742.doi: 10.1016/S0246-0203(03)00015-3.

    [28]

    T. G. Xu and T. S. Zhang, White noise driven SPDEs with reflection: Existence, uniqueness and large deviation principles, Stochatic Processes and Their Applications, 119 (2009), 3453-3470.doi: 10.1016/j.spa.2009.06.005.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return