November  2015, 35(11): 5203-5219. doi: 10.3934/dcds.2015.35.5203

Invariant foliations for stochastic partial differential equations with dynamic boundary conditions

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China

Received  September 2013 Revised  March 2014 Published  May 2015

Invariant foliations are geometric structures useful for describing and understanding qualitative behaviors of nonlinear dynamical systems. They decompose the state space into regions of different dynamical regimes, and thus help depict dynamics. We investigate invariant foliations for a class of stochastic partial differential equations with random dynamical boundary conditions, and then provide an approximation for these foliations when the noise intensity is sufficiently small.
Citation: Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203
References:
[1]

E. Alòs and S. Bonaccorsi, Spdes with dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 125-154. doi: 10.1016/S0246-0203(01)01097-4.

[2]

H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura Appl., 171 (1996), 41-62. doi: 10.1007/BF01759381.

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-662-12878-7.

[4]

P. Brune and B. Schmalfuss, Inertial manifolds for stochastic PDE with dynamical boundary conditions, Commun. Pure Appl. Anal., 10 (2011), 831-846. doi: 10.3934/cpaa.2011.10.831.

[5]

T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.

[6]

G. Chen, J. Duan and J. Zhang, Slow foliation of a slow-fast stochastic evolutionary system, J. Funct. Anal., 267 (2014), 2663-2697. doi: 10.1016/j.jfa.2014.07.031.

[7]

X. Chen, J. Hale and B. Tan, Invariant foliations for $C^{1}$ semigroups in Banach spaces, J. Diff. Eqs., 139 (1997), 283-318. doi: 10.1006/jdeq.1997.3255.

[8]

S. N. Chow, X. B. Lin and K. Lu, Smooth invariant foliation in infinite-dimensional spaces, J. Diff. Eqs., 94 (1991), 266-291. doi: 10.1016/0022-0396(91)90093-O.

[9]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.

[10]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamcal boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338. doi: 10.3934/dcds.2007.18.315.

[11]

I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamcial boundary conditions, Differential Integral Equations, 17 (2004), 751-780.

[12]

P. Colli and J. F. Rodrigues, Diffusion through thin layers with high specific heat, Asymptotic Anal., 3 (1990), 249-263.

[13]

A. Du and J. Duan, Invariant manifold reduction for stochastic dynamical systems, Dynamical Systems and Applications, 16 (2007), 681-696.

[14]

J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynamics and Diff. Eqns., 16 (2004), 949-972. doi: 10.1007/s10884-004-7830-z.

[15]

K. J. Engel, Spectral theory and generator property for one-sided coupled operator matrices, Semigroup Forum, 58 (1999), 267-295. doi: 10.1007/s002339900020.

[16]

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolutions Equations, Spinger-Verlag, 2000.

[17]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1346. doi: 10.1080/03605309308820976.

[18]

J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions, Longman Sci. Tech., 296 (1993), 138-148.

[19]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical systems, and Bifurcation of Vector Fields, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-1140-2.

[20]

T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43-60. doi: 10.1017/S0308210500023945.

[21]

K. Lu and B. Schmafuss, Invariant foliation for stochastic partial differential equations, Stoch. Dyn., 8 (2008), 505-518. doi: 10.1142/S0219493708002421.

[22]

K. Lu and B. schmalfuss, Invariant manifolds for stochastic wave equations, J. Diff. Eqs., 236 (2007), 460-492. doi: 10.1016/j.jde.2006.09.024.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[24]

J. Ren, J. Duan and C. Jones, Approximation of random slow manifolds and settling of inertial particles under uncertainty, arXiv:1212.4216.

[25]

J. F. Rodrigues, V. A. Solonnikov and F. Yi, On a parabolic system with time derivative in the boundary conditions and related free boundary problems, Math. Ann., 315 (1999), 61-95. doi: 10.1007/s002080050318.

[26]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in stochastic nonlinear dynamical systems, J. Math. Phys., 51 (2010), 042702, 12pp. doi: 10.1063/1.3371010.

[27]

X. Sun, X. Kan and J. Duan, Approximation of invariant foliations for stochastic dynamical systems, Stoch. Dyn., 12 (2012), 1150011, 12pp. doi: 10.1142/S0219493712003614.

[28]

T. Wanner, Linearization of random dynamical systmes, Dynamics Reported, 4 (1995), 203-269.

show all references

References:
[1]

E. Alòs and S. Bonaccorsi, Spdes with dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 125-154. doi: 10.1016/S0246-0203(01)01097-4.

[2]

H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura Appl., 171 (1996), 41-62. doi: 10.1007/BF01759381.

[3]

L. Arnold, Random Dynamical Systems, Springer-Verlag, New York, 1998. doi: 10.1007/978-3-662-12878-7.

[4]

P. Brune and B. Schmalfuss, Inertial manifolds for stochastic PDE with dynamical boundary conditions, Commun. Pure Appl. Anal., 10 (2011), 831-846. doi: 10.3934/cpaa.2011.10.831.

[5]

T. Caraballo, J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for random and stochastic partial differential equations, Adv. Nonlinear Stud., 10 (2010), 23-52.

[6]

G. Chen, J. Duan and J. Zhang, Slow foliation of a slow-fast stochastic evolutionary system, J. Funct. Anal., 267 (2014), 2663-2697. doi: 10.1016/j.jfa.2014.07.031.

[7]

X. Chen, J. Hale and B. Tan, Invariant foliations for $C^{1}$ semigroups in Banach spaces, J. Diff. Eqs., 139 (1997), 283-318. doi: 10.1006/jdeq.1997.3255.

[8]

S. N. Chow, X. B. Lin and K. Lu, Smooth invariant foliation in infinite-dimensional spaces, J. Diff. Eqs., 94 (1991), 266-291. doi: 10.1016/0022-0396(91)90093-O.

[9]

I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999.

[10]

I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with dynamcal boundary conditions, Discrete Contin. Dyn. Syst., 18 (2007), 315-338. doi: 10.3934/dcds.2007.18.315.

[11]

I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamcial boundary conditions, Differential Integral Equations, 17 (2004), 751-780.

[12]

P. Colli and J. F. Rodrigues, Diffusion through thin layers with high specific heat, Asymptotic Anal., 3 (1990), 249-263.

[13]

A. Du and J. Duan, Invariant manifold reduction for stochastic dynamical systems, Dynamical Systems and Applications, 16 (2007), 681-696.

[14]

J. Duan, K. Lu and B. Schmalfuss, Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynamics and Diff. Eqns., 16 (2004), 949-972. doi: 10.1007/s10884-004-7830-z.

[15]

K. J. Engel, Spectral theory and generator property for one-sided coupled operator matrices, Semigroup Forum, 58 (1999), 267-295. doi: 10.1007/s002339900020.

[16]

K. J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolutions Equations, Spinger-Verlag, 2000.

[17]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1346. doi: 10.1080/03605309308820976.

[18]

J. Escher, A note on quasilinear parabolic systems with dynamical boundary conditions, Longman Sci. Tech., 296 (1993), 138-148.

[19]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical systems, and Bifurcation of Vector Fields, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-1140-2.

[20]

T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43-60. doi: 10.1017/S0308210500023945.

[21]

K. Lu and B. Schmafuss, Invariant foliation for stochastic partial differential equations, Stoch. Dyn., 8 (2008), 505-518. doi: 10.1142/S0219493708002421.

[22]

K. Lu and B. schmalfuss, Invariant manifolds for stochastic wave equations, J. Diff. Eqs., 236 (2007), 460-492. doi: 10.1016/j.jde.2006.09.024.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[24]

J. Ren, J. Duan and C. Jones, Approximation of random slow manifolds and settling of inertial particles under uncertainty, arXiv:1212.4216.

[25]

J. F. Rodrigues, V. A. Solonnikov and F. Yi, On a parabolic system with time derivative in the boundary conditions and related free boundary problems, Math. Ann., 315 (1999), 61-95. doi: 10.1007/s002080050318.

[26]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in stochastic nonlinear dynamical systems, J. Math. Phys., 51 (2010), 042702, 12pp. doi: 10.1063/1.3371010.

[27]

X. Sun, X. Kan and J. Duan, Approximation of invariant foliations for stochastic dynamical systems, Stoch. Dyn., 12 (2012), 1150011, 12pp. doi: 10.1142/S0219493712003614.

[28]

T. Wanner, Linearization of random dynamical systmes, Dynamics Reported, 4 (1995), 203-269.

[1]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[2]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061

[3]

Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6201-6246. doi: 10.3934/dcds.2020276

[4]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[5]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[6]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[9]

Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022098

[10]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[13]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[14]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[15]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[16]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[17]

Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81

[18]

Min Yang, Guanggan Chen. Finite dimensional reducing and smooth approximating for a class of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1565-1581. doi: 10.3934/dcdsb.2019240

[19]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021020

[20]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]