November  2015, 35(11): 5239-5253. doi: 10.3934/dcds.2015.35.5239

Exponential convergence of non-linear monotone SPDEs

1. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

Received  October 2013 Revised  October 2014 Published  May 2015

For a Markov semigroup $P_t$ with invariant probability measure $\mu$, a constant $\lambda>0$ is called a lower bound of the ultra-exponential convergence rate of $P_t$ to $\mu$, if there exists a constant $C\in (0,\infty)$ such that $$ \sup_{\mu(f^2)\le 1}||P_tf-\mu(f)||_\infty \le C e^{-\lambda t},\ \ t\ge 1.$$ By using the coupling by change of measure in the line of [F.-Y. Wang, Ann. Probab. 35(2007), 1333--1350], explicit lower bounds of the ultra-exponential convergence rate are derived for a class of non-linear monotone stochastic partial differential equations. The main result is illustrated by the stochastic porous medium equation and the stochastic $p$-Laplace equation respectively. Finally, the $V$-uniformly exponential convergence is investigated for stochastic fast-diffusion equations.
Citation: Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239
References:
[1]

D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains,, J. Diff. Equ., 39 (1981), 378. doi: 10.1016/0022-0396(81)90065-6. Google Scholar

[2]

A. Chojnowska-Michalik and B. Goldys, Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator,, J. Math. Kyoto Univ., 36 (1996), 481. Google Scholar

[3]

G. Da Prato, M. Röckner and B. L. Rozovskiĭ and F.-Y. Wang, Strong solutions of Generalized porous media equations: Existence, uniqueness and ergodicity,, Comm. Part. Diff. Equ., 31 (2006), 277. doi: 10.1080/03605300500357998. Google Scholar

[4]

B. Goldys and B. Maslowski, Exponential ergordicity for stochastic reaction-diffusion equations,, in Stochastic Partial Differential Equations and Applications-VII, (2006), 115. doi: 10.1201/9781420028720.ch12. Google Scholar

[5]

B. Goldys and B. Maslowski, Lower estimates of transition density and bounds on exponential ergodicity for stochastic PDEs,, Ann. Probab., 34 (2006), 1451. doi: 10.1214/009117905000000800. Google Scholar

[6]

N. V. Krylov and B. L. Rozovskiĭ, Stochastic evolution equations,, Current problems in mathematics, (1979), 71. Google Scholar

[7]

W. Liu, Harnack inequality and applications for stochastic evolution equations with monotone drifts,, J. Evol. Equ., 9 (2009), 747. doi: 10.1007/s00028-009-0032-8. Google Scholar

[8]

W. Liu, Ergodicity of transition semigroups for stochastic fast diffusion equations,, Front. Math. China, 6 (2011), 449. doi: 10.1007/s11464-011-0112-2. Google Scholar

[9]

W. Liu and M. Röckner, SPDE in Hilbert space with locally monotone coefficients,, J. Funct. Anal., 259 (2010), 2902. doi: 10.1016/j.jfa.2010.05.012. Google Scholar

[10]

W. Liu and M. Röckner, Local and global well-posedness of SPDE with generalized coercivity conditions,, J. Diffe. Equat., 254 (2013), 725. doi: 10.1016/j.jde.2012.09.014. Google Scholar

[11]

W. Liu and J. M. Tölle, Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts,, Elect. Comm. Probab., 16 (2011), 447. doi: 10.1214/ECP.v16-1643. Google Scholar

[12]

W. Liu and F.-Y. Wang, Harnack inequality and strong Feller property for stochastic fast-diffusion equations,, J. Math. Anal. Appl., 342 (2008), 651. doi: 10.1016/j.jmaa.2007.12.047. Google Scholar

[13]

E. Pardoux, Sur des equations aux dérivées partielles stochastiques monotones,, C. R. Acad. Sci., 275 (1972). Google Scholar

[14]

E. Pardoux, Equations aux dérivées partielles stochastiques non lineaires monotones: Etude de solutions fortes de type Ito,, Thése Doct. Sci. Math. Univ. Paris Sud., (1975). Google Scholar

[15]

J. Ren, M. Röckner and F.-Y. Wang, Stochastic generalized porous media and fast diffusion equations,, J. Diff. Equat., 238 (2007), 118. doi: 10.1016/j.jde.2007.03.027. Google Scholar

[16]

M. Röckner and F.-Y. Wang, Harnack and functional inequalities for generalized Mehler semigroups,, J. Funct. Anal., 203 (2003), 237. doi: 10.1016/S0022-1236(03)00165-4. Google Scholar

[17]

M. Röckner and F.-Y. Wang, Non-monotone stochastic generalized porous media equations,, J. Diff. Equat., 245 (2008), 3898. doi: 10.1016/j.jde.2008.03.003. Google Scholar

[18]

F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations,, Ann. Probab., 35 (2007), 1333. doi: 10.1214/009117906000001204. Google Scholar

[19]

F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations,, Springer Briefs in Mathematics, (2013). Google Scholar

[20]

F.-Y. Wang and L. Xu, Derivative formula and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15 (2012). doi: 10.1142/S0219025712500208. Google Scholar

[21]

F.-Y. Wang and C. Yuan, Harnack inequalities for functional SDEs with multiplicative noise and applications,, Stoch. Proc. Appl., 121 (2011), 2692. doi: 10.1016/j.spa.2011.07.001. Google Scholar

show all references

References:
[1]

D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains,, J. Diff. Equ., 39 (1981), 378. doi: 10.1016/0022-0396(81)90065-6. Google Scholar

[2]

A. Chojnowska-Michalik and B. Goldys, Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator,, J. Math. Kyoto Univ., 36 (1996), 481. Google Scholar

[3]

G. Da Prato, M. Röckner and B. L. Rozovskiĭ and F.-Y. Wang, Strong solutions of Generalized porous media equations: Existence, uniqueness and ergodicity,, Comm. Part. Diff. Equ., 31 (2006), 277. doi: 10.1080/03605300500357998. Google Scholar

[4]

B. Goldys and B. Maslowski, Exponential ergordicity for stochastic reaction-diffusion equations,, in Stochastic Partial Differential Equations and Applications-VII, (2006), 115. doi: 10.1201/9781420028720.ch12. Google Scholar

[5]

B. Goldys and B. Maslowski, Lower estimates of transition density and bounds on exponential ergodicity for stochastic PDEs,, Ann. Probab., 34 (2006), 1451. doi: 10.1214/009117905000000800. Google Scholar

[6]

N. V. Krylov and B. L. Rozovskiĭ, Stochastic evolution equations,, Current problems in mathematics, (1979), 71. Google Scholar

[7]

W. Liu, Harnack inequality and applications for stochastic evolution equations with monotone drifts,, J. Evol. Equ., 9 (2009), 747. doi: 10.1007/s00028-009-0032-8. Google Scholar

[8]

W. Liu, Ergodicity of transition semigroups for stochastic fast diffusion equations,, Front. Math. China, 6 (2011), 449. doi: 10.1007/s11464-011-0112-2. Google Scholar

[9]

W. Liu and M. Röckner, SPDE in Hilbert space with locally monotone coefficients,, J. Funct. Anal., 259 (2010), 2902. doi: 10.1016/j.jfa.2010.05.012. Google Scholar

[10]

W. Liu and M. Röckner, Local and global well-posedness of SPDE with generalized coercivity conditions,, J. Diffe. Equat., 254 (2013), 725. doi: 10.1016/j.jde.2012.09.014. Google Scholar

[11]

W. Liu and J. M. Tölle, Existence and uniqueness of invariant measures for stochastic evolution equations with weakly dissipative drifts,, Elect. Comm. Probab., 16 (2011), 447. doi: 10.1214/ECP.v16-1643. Google Scholar

[12]

W. Liu and F.-Y. Wang, Harnack inequality and strong Feller property for stochastic fast-diffusion equations,, J. Math. Anal. Appl., 342 (2008), 651. doi: 10.1016/j.jmaa.2007.12.047. Google Scholar

[13]

E. Pardoux, Sur des equations aux dérivées partielles stochastiques monotones,, C. R. Acad. Sci., 275 (1972). Google Scholar

[14]

E. Pardoux, Equations aux dérivées partielles stochastiques non lineaires monotones: Etude de solutions fortes de type Ito,, Thése Doct. Sci. Math. Univ. Paris Sud., (1975). Google Scholar

[15]

J. Ren, M. Röckner and F.-Y. Wang, Stochastic generalized porous media and fast diffusion equations,, J. Diff. Equat., 238 (2007), 118. doi: 10.1016/j.jde.2007.03.027. Google Scholar

[16]

M. Röckner and F.-Y. Wang, Harnack and functional inequalities for generalized Mehler semigroups,, J. Funct. Anal., 203 (2003), 237. doi: 10.1016/S0022-1236(03)00165-4. Google Scholar

[17]

M. Röckner and F.-Y. Wang, Non-monotone stochastic generalized porous media equations,, J. Diff. Equat., 245 (2008), 3898. doi: 10.1016/j.jde.2008.03.003. Google Scholar

[18]

F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations,, Ann. Probab., 35 (2007), 1333. doi: 10.1214/009117906000001204. Google Scholar

[19]

F.-Y. Wang, Harnack Inequality and Applications for Stochastic Partial Differential Equations,, Springer Briefs in Mathematics, (2013). Google Scholar

[20]

F.-Y. Wang and L. Xu, Derivative formula and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15 (2012). doi: 10.1142/S0219025712500208. Google Scholar

[21]

F.-Y. Wang and C. Yuan, Harnack inequalities for functional SDEs with multiplicative noise and applications,, Stoch. Proc. Appl., 121 (2011), 2692. doi: 10.1016/j.spa.2011.07.001. Google Scholar

[1]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[2]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019075

[3]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[4]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[5]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

[6]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[7]

Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131

[8]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[9]

Min Zhu, Panpan Ren, Junping Li. Exponential stability of solutions for retarded stochastic differential equations without dissipativity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2923-2938. doi: 10.3934/dcdsb.2017157

[10]

Bahareh Akhtari, Esmail Babolian, Andreas Neuenkirch. An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 23-38. doi: 10.3934/dcdsb.2015.20.23

[11]

Ciprian G. Gal, Alain Miranville. Robust exponential attractors and convergence to equilibria for non-isothermal Cahn-Hilliard equations with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 113-147. doi: 10.3934/dcdss.2009.2.113

[12]

Jonathan Zinsl. Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2915-2930. doi: 10.3934/dcds.2016.36.2915

[13]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[14]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[15]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[16]

Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259

[17]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[18]

Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial & Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199

[19]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[20]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic & Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]