\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stochastic Korteweg-de Vries equation driven by fractional Brownian motion

Abstract Related Papers Cited by
  • We consider the Cauchy problem for the Korteweg-de Vries equation driven by a cylindrical fractional Brownian motion (fBm) in this paper. With Hurst parameter $H\geq\frac{7}{16}$ of the fBm, we obtain the local existence results with initial value in classical Sobolev spaces $H^s$ with $s\geq -\frac{9}{16}$. Furthermore, we give the relation between the Hurst parameter $H$ and the index $s$ to the Sobolev spaces $H^s$, which finds out the regularity between the driven term fBm and the initial value for the stochastic Korteweg-de Vries equation.
    Mathematics Subject Classification: Primary: 35R60, 35Q53; Secondary: 60H15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, Annals of Probab., 29 (2001), 766-801.doi: 10.1214/aop/1008956692.

    [2]

    E. Alòs and D. Nualart, Stochastic calculus with respect to fractional Brownian motion, Stoch. Stoch. Rep., 75 (2003), 129-152.doi: 10.1080/1045112031000078917.

    [3]

    F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008.doi: 10.1007/978-1-84628-797-8.

    [4]

    J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation, Geom. Funct. Anal., 2 (1993), 107-156, 209-262.

    [5]

    P. Caithamer, The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise, Stoch. Dyn., 5 (2005), 45-64.doi: 10.1142/S0219493705001286.

    [6]

    H. Y. Chang, C. Lien, S. Sukarto, S. Raychaudhury, J. Hill, E. K. Tsikis and K. E. Lonngren, Propagation of ion-acoustic solitons in a non-quiescent plasma, Plasma Phys. Control. Fusion, 28 (1986), 675-681.doi: 10.1088/0741-3335/28/4/005.

    [7]

    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.doi: 10.1017/CBO9780511666223.

    [8]

    A. de Bouard, A. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Veris equation, J. Funct. Anal., 169 (1999), 532-558.doi: 10.1006/jfan.1999.3484.

    [9]

    A. de Bouard, A. Debussche and Y. Tsutsumi, Periocic solutions of the Korteweg-de Veris equation driven by white noise, SIAM J. Math. Anal., 36 (2004), 815-855.doi: 10.1137/S0036141003425301.

    [10]

    T. E. Duncan, J. Jakubowski and B. Pasik-Duncan, Stochastic integration for fractional Brownian motion in a Hilbert space, Stoch. Dyn., 6 (2006), 53-75.doi: 10.1142/S0219493706001645.

    [11]

    T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Fractional Brownian motion and stochastic equations in Hilbert spaces, Stoch. Dyn., 2 (2002), 225-250.doi: 10.1142/S0219493702000340.

    [12]

    M. Erraoui, D. Nualart and Y. Ouknine, Hyperbolic stochastic partial differential equations with additive fractional Brownian sheet, Stoch. Dyn., 3 (2003), 121-139.doi: 10.1142/S0219493703000681.

    [13]

    W. Grecksch and V. V. Ahn, A parabolic stochastic differential equation with fractional Brownian motion input, Stat. Probab. Lett., 41 (1999), 337-346.doi: 10.1016/S0167-7152(98)00147-3.

    [14]

    B. Guo and Z. Huo, The well-posedness of the Korteweg-de Vries-Benjamin-Ono equation, J. Math. Anal. Appl., 295 (2004), 444-458.doi: 10.1016/j.jmaa.2004.02.043.

    [15]

    R. Herman, The stochastic, damped Korteweg-de Vries equation, J. Phys. A., 23 (1990), 1063-1084.doi: 10.1088/0305-4470/23/7/014.

    [16]

    Y. Hu, Heat equation with fractional white noise potential, Appl. Math. Optim., 43 (2001), 221-243.doi: 10.1007/s00245-001-0001-2.

    [17]

    Y. Hu and D. Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Related Fields, 143 (2009), 285-328.doi: 10.1007/s00440-007-0127-5.

    [18]

    C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the Kdv equation, J. Amer. Math. Soc., 9 (1996), 573-603.doi: 10.1090/S0894-0347-96-00200-7.

    [19]

    C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.doi: 10.1215/S0012-7094-93-07101-3.

    [20]

    A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. URSS (N.S.), 26 (1940), 115-118.

    [21]

    B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, Calif., 1982.

    [22]

    B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.doi: 10.1137/1010093.

    [23]

    B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anl., 202 (2003), 277-305.doi: 10.1016/S0022-1236(02)00065-4.

    [24]

    Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, 1929, Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-540-75873-0.

    [25]

    D. Nualart, Malliavin Calculus and Related topics, Probability and its Applications (New York), Springer Verlag, New York, 1995.doi: 10.1007/978-1-4757-2437-0.

    [26]

    J. Printems, The stochastic Korteweg-de Vries equation in $L^2(\mathbb R)$, J. Differ. Equations, 153 (1999), 338-373.doi: 10.1006/jdeq.1998.3548.

    [27]

    M. Scalerandi, A. Romano and C. A. Condat, Korteweg-de Vries solitons under additive stochastic perturbations, Phys. Rev. E, 58 (1998), 4166-4173.

    [28]

    T. Tao, Multilinear weighted convolution of $ L^2 $ functions, and applications to nonlinear dispersive equation, Amer. J. Math., 123 (2001), 839-908.doi: 10.1353/ajm.2001.0035.

    [29]

    S. Tindel, C. A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186-204.doi: 10.1007/s00440-003-0282-2.

    [30]

    G. Wang, M. Zeng and B. Guo, Stochastic Burgers' equation driven by fractional Brownian motion, J. Math. Anal. Appl., 371 (2010), 210-222.doi: 10.1016/j.jmaa.2010.05.015.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return