November  2015, 35(11): 5353-5378. doi: 10.3934/dcds.2015.35.5353

On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces

1. 

School of Management, Fudan University, Shanghai 200433, China

Received  October 2013 Revised  May 2014 Published  May 2015

This paper is concerned with solution in weighted Hölder spaces for backward stochastic partial differential equations (BSPDEs) in a half space. Considering the solution as functional with value in Banach spaces of stochastic processes, and using the methods of partial differential equations (PDEs), we establish the existence and uniqueness of classical solution for BSPDE in functional weighted Hölder spaces.
Citation: Wenning Wei. On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5353-5378. doi: 10.3934/dcds.2015.35.5353
References:
[1]

A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions,, Stochastics, 9 (1983), 169.  doi: 10.1080/17442508308833253.  Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observed Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[4]

N. Dokuchaev, Backward parabolic Itô equations and the second fundamental inequality,, Random Operators and Stochastic Equations, 20 (2012), 69.  doi: 10.1515/rose-2012-0003.  Google Scholar

[5]

K. Du, J. Qiu and S. Tang, $L^p$ theory for super-parabolic backward stochastic partial differential equations in the whole space,, Applied Mathematics and Optimization, 65 (2012), 175.  doi: 10.1007/s00245-011-9154-9.  Google Scholar

[6]

K. Du and S. Tang, Strong solution of backward stochastic partial differential equations in $C^2$ domains,, Probability Theory and Related Fields, 154 (2012), 255.  doi: 10.1007/s00440-011-0369-0.  Google Scholar

[7]

K. Du, S. Tang and Q. Zhang, $ W^{m, p}$-solution ($ p\geq 2 $) of linear degenerate backward stochastic partial differential equations in the whole space,, Journal of Differential Equations, 254 (2013), 2877.  doi: 10.1016/j.jde.2013.01.013.  Google Scholar

[8]

K. Du and Q. Meng, A revisit to $W_n^2$-theory of super-parabolic backward stochastic partial differential equations in $\mathbbR^d$,, Stochastic Processes and their Applications, 120 (2010), 1996.  doi: 10.1016/j.spa.2010.06.001.  Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Sencond Order,, Springer, (2001).   Google Scholar

[10]

Y. Hu, J. Ma and J. Yong, On semi-linear degenerate backward stochastic differential equations,, Probability Theory and Related Fields, 123 (2002), 381.  doi: 10.1007/s004400100193.  Google Scholar

[11]

Y. Hu and S. Peng, Adapted solution of a backward semi-linear stochastic evolution equations,, Stochastic Analysis and Applications, 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[12]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, American Mathematical Society, (1968).   Google Scholar

[13]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications,, Stochastic Processes and their Applications, 70 (1997), 59.  doi: 10.1016/S0304-4149(97)00057-4.  Google Scholar

[14]

J. Ma and J. Yong, On linear, degenerate backward stochastic differential equations,, Probability Theory and Related Fields, 113 (1999), 135.  doi: 10.1007/s004400050205.  Google Scholar

[15]

R. Mikulevicius, On the Cauchy problem for parabolic SPDEs in Hölder classes,, Annals of Probability, 28 (2000), 74.  doi: 10.1214/aop/1019160112.  Google Scholar

[16]

R. Mikulevicius and H. Pragarauskas, On the Cauchy-Dirichlet problem in half-space for parabolic SPDEs in weighted Hölder spaces,, Stochstic Processes and their Applications, 106 (2003), 185.  doi: 10.1016/S0304-4149(03)00042-5.  Google Scholar

[17]

S. Peng, Stochastic Hamilton-Jacobi-Bellman equations,, SIAM J. Control Optim., 30 (1992), 284.  doi: 10.1137/0330018.  Google Scholar

[18]

J. Qiu and S. Tang, Maximum principles for backward stochastic partial differential equations,, Journal of Functional Analysis, 262 (2012), 2436.  doi: 10.1016/j.jfa.2011.12.002.  Google Scholar

[19]

J. Qiu, S. Tang and Y. You, 2D backward stochastic Navier-Stokes equations with nonlinear forcing,, Stochastic Processes and their Applications, 122 (2012), 334.  doi: 10.1016/j.spa.2011.08.010.  Google Scholar

[20]

B. Rozovskiĭ, On stochastic partial differential equations,, Sbornik: Mathematics, 25 (1975), 295.   Google Scholar

[21]

S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations,, SIAM J. Control Optim., 36 (1998), 1596.  doi: 10.1137/S0363012996313100.  Google Scholar

[22]

S. Tang, A new partially observed stochastic maximum principle,, in 37th IEEE Control and Decision Conference, (1998), 2353.   Google Scholar

[23]

S. Tang, Semi-linear systems of backward stochastic partial differential equations in $\mathbbR^n$,, Chinese Annals of Mathematics, 26 (2005), 437.  doi: 10.1142/S025295990500035X.  Google Scholar

[24]

S. Tang and W. Wei, On the cauchy problem for backward stochastic partial differential equations in Hölder spaces,, to appear in Annals of Probability, ().   Google Scholar

[25]

X. Zhou, A duality analysis on stochastic partial differential equations,, Journal of Functional Analysis, 103 (1992), 275.  doi: 10.1016/0022-1236(92)90122-Y.  Google Scholar

[26]

X. Zhou, On the necessary condition of optimal controls for stochastic partial differential equations,, SIAM J. Control Optim., 31 (1993), 1462.  doi: 10.1137/0331068.  Google Scholar

show all references

References:
[1]

A. Bensoussan, Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions,, Stochastics, 9 (1983), 169.  doi: 10.1080/17442508308833253.  Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observed Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[4]

N. Dokuchaev, Backward parabolic Itô equations and the second fundamental inequality,, Random Operators and Stochastic Equations, 20 (2012), 69.  doi: 10.1515/rose-2012-0003.  Google Scholar

[5]

K. Du, J. Qiu and S. Tang, $L^p$ theory for super-parabolic backward stochastic partial differential equations in the whole space,, Applied Mathematics and Optimization, 65 (2012), 175.  doi: 10.1007/s00245-011-9154-9.  Google Scholar

[6]

K. Du and S. Tang, Strong solution of backward stochastic partial differential equations in $C^2$ domains,, Probability Theory and Related Fields, 154 (2012), 255.  doi: 10.1007/s00440-011-0369-0.  Google Scholar

[7]

K. Du, S. Tang and Q. Zhang, $ W^{m, p}$-solution ($ p\geq 2 $) of linear degenerate backward stochastic partial differential equations in the whole space,, Journal of Differential Equations, 254 (2013), 2877.  doi: 10.1016/j.jde.2013.01.013.  Google Scholar

[8]

K. Du and Q. Meng, A revisit to $W_n^2$-theory of super-parabolic backward stochastic partial differential equations in $\mathbbR^d$,, Stochastic Processes and their Applications, 120 (2010), 1996.  doi: 10.1016/j.spa.2010.06.001.  Google Scholar

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Sencond Order,, Springer, (2001).   Google Scholar

[10]

Y. Hu, J. Ma and J. Yong, On semi-linear degenerate backward stochastic differential equations,, Probability Theory and Related Fields, 123 (2002), 381.  doi: 10.1007/s004400100193.  Google Scholar

[11]

Y. Hu and S. Peng, Adapted solution of a backward semi-linear stochastic evolution equations,, Stochastic Analysis and Applications, 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[12]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, American Mathematical Society, (1968).   Google Scholar

[13]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications,, Stochastic Processes and their Applications, 70 (1997), 59.  doi: 10.1016/S0304-4149(97)00057-4.  Google Scholar

[14]

J. Ma and J. Yong, On linear, degenerate backward stochastic differential equations,, Probability Theory and Related Fields, 113 (1999), 135.  doi: 10.1007/s004400050205.  Google Scholar

[15]

R. Mikulevicius, On the Cauchy problem for parabolic SPDEs in Hölder classes,, Annals of Probability, 28 (2000), 74.  doi: 10.1214/aop/1019160112.  Google Scholar

[16]

R. Mikulevicius and H. Pragarauskas, On the Cauchy-Dirichlet problem in half-space for parabolic SPDEs in weighted Hölder spaces,, Stochstic Processes and their Applications, 106 (2003), 185.  doi: 10.1016/S0304-4149(03)00042-5.  Google Scholar

[17]

S. Peng, Stochastic Hamilton-Jacobi-Bellman equations,, SIAM J. Control Optim., 30 (1992), 284.  doi: 10.1137/0330018.  Google Scholar

[18]

J. Qiu and S. Tang, Maximum principles for backward stochastic partial differential equations,, Journal of Functional Analysis, 262 (2012), 2436.  doi: 10.1016/j.jfa.2011.12.002.  Google Scholar

[19]

J. Qiu, S. Tang and Y. You, 2D backward stochastic Navier-Stokes equations with nonlinear forcing,, Stochastic Processes and their Applications, 122 (2012), 334.  doi: 10.1016/j.spa.2011.08.010.  Google Scholar

[20]

B. Rozovskiĭ, On stochastic partial differential equations,, Sbornik: Mathematics, 25 (1975), 295.   Google Scholar

[21]

S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations,, SIAM J. Control Optim., 36 (1998), 1596.  doi: 10.1137/S0363012996313100.  Google Scholar

[22]

S. Tang, A new partially observed stochastic maximum principle,, in 37th IEEE Control and Decision Conference, (1998), 2353.   Google Scholar

[23]

S. Tang, Semi-linear systems of backward stochastic partial differential equations in $\mathbbR^n$,, Chinese Annals of Mathematics, 26 (2005), 437.  doi: 10.1142/S025295990500035X.  Google Scholar

[24]

S. Tang and W. Wei, On the cauchy problem for backward stochastic partial differential equations in Hölder spaces,, to appear in Annals of Probability, ().   Google Scholar

[25]

X. Zhou, A duality analysis on stochastic partial differential equations,, Journal of Functional Analysis, 103 (1992), 275.  doi: 10.1016/0022-1236(92)90122-Y.  Google Scholar

[26]

X. Zhou, On the necessary condition of optimal controls for stochastic partial differential equations,, SIAM J. Control Optim., 31 (1993), 1462.  doi: 10.1137/0331068.  Google Scholar

[1]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[2]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[3]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[4]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[5]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[6]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[7]

Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5285-5315. doi: 10.3934/dcds.2015.35.5285

[8]

Yufeng Shi, Qingfeng Zhu. A Kneser-type theorem for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1565-1579. doi: 10.3934/dcdsb.2010.14.1565

[9]

Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control & Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013

[10]

Weidong Zhao, Jinlei Wang, Shige Peng. Error estimates of the $\theta$-scheme for backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 905-924. doi: 10.3934/dcdsb.2009.12.905

[11]

Weidong Zhao, Yang Li, Guannan Zhang. A generalized $\theta$-scheme for solving backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1585-1603. doi: 10.3934/dcdsb.2012.17.1585

[12]

Shouwen Fang, Peng Zhu. Differential Harnack estimates for backward heat equations with potentials under geometric flows. Communications on Pure & Applied Analysis, 2015, 14 (3) : 793-809. doi: 10.3934/cpaa.2015.14.793

[13]

Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051

[14]

Feng Bao, Yanzhao Cao, Weidong Zhao. A first order semi-discrete algorithm for backward doubly stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1297-1313. doi: 10.3934/dcdsb.2015.20.1297

[15]

Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control & Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501

[16]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[17]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[18]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

[19]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[20]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]