• Previous Article
    On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces
  • DCDS Home
  • This Issue
  • Next Article
    Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing
November  2015, 35(11): 5379-5412. doi: 10.3934/dcds.2015.35.5379

Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations

1. 

Department of Finance and Control Sciences, School of Mathematical Science, Fudan University, Shanghai 200433, China

Received  April 2014 Revised  October 2014 Published  May 2015

The paper is concerned with a semi-linear backward stochastic Schrödinger equation in $\mathbb{R}^d$ or in its bounded domain of a $C^2$ boundary. Galerkin's finite-dimensional approximation method is used and the harmonic role of the Laplacian is shown. The existence, uniqueness and regularity are given for the weak solution of the equation. A more general backward stochastic Hamiltonian partial differential equation is also discussed.
Citation: Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379
References:
[1]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst., 315 (1983), 387. doi: 10.1016/0016-0032(83)90059-5. Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511526503. Google Scholar

[3]

J. Bismut, Conjugate convex functions in optimal stochastic control,, J. Math. Anal. Apl., 44 (1973), 384. doi: 10.1016/0022-247X(73)90066-8. Google Scholar

[4]

J. Bismut, Linear quadradic optimal stochastic control with random coefficients,, SIAM J. Control Optim., 14 (1976), 414. doi: 10.1137/0314028. Google Scholar

[5]

J. Bismut, An introductory approach to duality in optimal stochastic control,, SIAM Rev., 20 (1978), 62. doi: 10.1137/1020004. Google Scholar

[6]

W. Craiq, Transformation theory of Hamiltonian PDE and the problem of water waves,, in Proceedings of the Advanced Study Institute on Hamiltonian Dynamical Systems and Applications, (2008), 67. doi: 10.1007/978-1-4020-6964-2_4. Google Scholar

[7]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161. doi: 10.1007/s002200050672. Google Scholar

[8]

K. Du, Backward Stochastic Partial Differential Equations and their Applications,, Ph.D thesis, (2011). Google Scholar

[9]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[10]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[11]

K. Frieler and C. Knoche, Solutions of Stochastic Differential Equations in Infinite Dimensional Hilbert Spaces and Their Dependence on Initial Data,, Diploma thesis, (2011), 02. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[13]

W. Grecksch and H. Lisei, Stochastic Nonlinear Equations of Schrödinger Type,, Stoch. Ana. Appl., 29 (2011), 631. doi: 10.1080/07362994.2011.581091. Google Scholar

[14]

Y. Hu and S. Peng, Adapted solution of a backward semilinear stochastic evolution equations,, Stoch. Anal. Appl., 9 (1991), 445. doi: 10.1080/07362999108809250. Google Scholar

[15]

N. Krylov and B. Rozovskii, On the Cauchy problem for superparabolic stochastic differential equations,, in Third Soviet-Japanese Sympos on Probability Theory, (1975), 77. Google Scholar

[16]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications,, Stoch. Proc. Appl., 70 (1997), 59. doi: 10.1016/S0304-4149(97)00057-4. Google Scholar

[17]

S. Mizohata, On the Cauchy Problem,, Academic Press, (1985). Google Scholar

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Systems Control Lett., 14 (1990), 55. doi: 10.1016/0167-6911(90)90082-6. Google Scholar

[19]

E. Pardoux and S. Peng, Backward stochastic differential equations and quaslinear parabolic partial differential equations,, in Stochastic Partial Differential Equations and their Applications (eds. B. Rozovskii and L. Boris), 176 (1992), 200. doi: 10.1007/BFb0007334. Google Scholar

[20]

S. Tang, Semi-linear systems of backward stochastic partial differential equations in $\mathbbR^n$,, Chin. Ann. Math., 26 (2005), 437. doi: 10.1142/S025295990500035X. Google Scholar

[21]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM Journal on Control Optimization, 48 (2009), 2191. doi: 10.1137/050641508. Google Scholar

[22]

S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations,, SIAM J. Control Optim., 36 (1998), 1596. doi: 10.1137/S0363012996313100. Google Scholar

[23]

S. Tang, A new partially observed stochastic maximum principle,, in Proceedings of 37th IEEE Control and Decision Conference, (1998), 2353. Google Scholar

[24]

X. Zhou, A duality analysis on stochastic partial differential equations,, Journal of Functional Analysis, 103 (1992), 275. doi: 10.1016/0022-1236(92)90122-Y. Google Scholar

[25]

X. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations,, SIAM J. Control Optim., 31 (1993), 1462. doi: 10.1137/0331068. Google Scholar

show all references

References:
[1]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst., 315 (1983), 387. doi: 10.1016/0016-0032(83)90059-5. Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511526503. Google Scholar

[3]

J. Bismut, Conjugate convex functions in optimal stochastic control,, J. Math. Anal. Apl., 44 (1973), 384. doi: 10.1016/0022-247X(73)90066-8. Google Scholar

[4]

J. Bismut, Linear quadradic optimal stochastic control with random coefficients,, SIAM J. Control Optim., 14 (1976), 414. doi: 10.1137/0314028. Google Scholar

[5]

J. Bismut, An introductory approach to duality in optimal stochastic control,, SIAM Rev., 20 (1978), 62. doi: 10.1137/1020004. Google Scholar

[6]

W. Craiq, Transformation theory of Hamiltonian PDE and the problem of water waves,, in Proceedings of the Advanced Study Institute on Hamiltonian Dynamical Systems and Applications, (2008), 67. doi: 10.1007/978-1-4020-6964-2_4. Google Scholar

[7]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161. doi: 10.1007/s002200050672. Google Scholar

[8]

K. Du, Backward Stochastic Partial Differential Equations and their Applications,, Ph.D thesis, (2011). Google Scholar

[9]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1. doi: 10.1111/1467-9965.00022. Google Scholar

[10]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[11]

K. Frieler and C. Knoche, Solutions of Stochastic Differential Equations in Infinite Dimensional Hilbert Spaces and Their Dependence on Initial Data,, Diploma thesis, (2011), 02. Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[13]

W. Grecksch and H. Lisei, Stochastic Nonlinear Equations of Schrödinger Type,, Stoch. Ana. Appl., 29 (2011), 631. doi: 10.1080/07362994.2011.581091. Google Scholar

[14]

Y. Hu and S. Peng, Adapted solution of a backward semilinear stochastic evolution equations,, Stoch. Anal. Appl., 9 (1991), 445. doi: 10.1080/07362999108809250. Google Scholar

[15]

N. Krylov and B. Rozovskii, On the Cauchy problem for superparabolic stochastic differential equations,, in Third Soviet-Japanese Sympos on Probability Theory, (1975), 77. Google Scholar

[16]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications,, Stoch. Proc. Appl., 70 (1997), 59. doi: 10.1016/S0304-4149(97)00057-4. Google Scholar

[17]

S. Mizohata, On the Cauchy Problem,, Academic Press, (1985). Google Scholar

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Systems Control Lett., 14 (1990), 55. doi: 10.1016/0167-6911(90)90082-6. Google Scholar

[19]

E. Pardoux and S. Peng, Backward stochastic differential equations and quaslinear parabolic partial differential equations,, in Stochastic Partial Differential Equations and their Applications (eds. B. Rozovskii and L. Boris), 176 (1992), 200. doi: 10.1007/BFb0007334. Google Scholar

[20]

S. Tang, Semi-linear systems of backward stochastic partial differential equations in $\mathbbR^n$,, Chin. Ann. Math., 26 (2005), 437. doi: 10.1142/S025295990500035X. Google Scholar

[21]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM Journal on Control Optimization, 48 (2009), 2191. doi: 10.1137/050641508. Google Scholar

[22]

S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations,, SIAM J. Control Optim., 36 (1998), 1596. doi: 10.1137/S0363012996313100. Google Scholar

[23]

S. Tang, A new partially observed stochastic maximum principle,, in Proceedings of 37th IEEE Control and Decision Conference, (1998), 2353. Google Scholar

[24]

X. Zhou, A duality analysis on stochastic partial differential equations,, Journal of Functional Analysis, 103 (1992), 275. doi: 10.1016/0022-1236(92)90122-Y. Google Scholar

[25]

X. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations,, SIAM J. Control Optim., 31 (1993), 1462. doi: 10.1137/0331068. Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065

[3]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[4]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[5]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[6]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

[7]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

[8]

Weiming Liu, Chunhua Wang. Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7081-7115. doi: 10.3934/dcds.2016109

[9]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[10]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[11]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[12]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[13]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[14]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[15]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[16]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[17]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[18]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[19]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[20]

Wolfgang Wagner. A random cloud model for the Schrödinger equation. Kinetic & Related Models, 2014, 7 (2) : 361-379. doi: 10.3934/krm.2014.7.361

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]