• Previous Article
    Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing
  • DCDS Home
  • This Issue
  • Next Article
    On the Cauchy-Dirichlet problem in a half space for backward SPDEs in weighted Hölder spaces
November  2015, 35(11): 5379-5412. doi: 10.3934/dcds.2015.35.5379

Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations

1. 

Department of Finance and Control Sciences, School of Mathematical Science, Fudan University, Shanghai 200433, China

Received  April 2014 Revised  October 2014 Published  May 2015

The paper is concerned with a semi-linear backward stochastic Schrödinger equation in $\mathbb{R}^d$ or in its bounded domain of a $C^2$ boundary. Galerkin's finite-dimensional approximation method is used and the harmonic role of the Laplacian is shown. The existence, uniqueness and regularity are given for the weak solution of the equation. A more general backward stochastic Hamiltonian partial differential equation is also discussed.
Citation: Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379
References:
[1]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst., 315 (1983), 387.  doi: 10.1016/0016-0032(83)90059-5.  Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[3]

J. Bismut, Conjugate convex functions in optimal stochastic control,, J. Math. Anal. Apl., 44 (1973), 384.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[4]

J. Bismut, Linear quadradic optimal stochastic control with random coefficients,, SIAM J. Control Optim., 14 (1976), 414.  doi: 10.1137/0314028.  Google Scholar

[5]

J. Bismut, An introductory approach to duality in optimal stochastic control,, SIAM Rev., 20 (1978), 62.  doi: 10.1137/1020004.  Google Scholar

[6]

W. Craiq, Transformation theory of Hamiltonian PDE and the problem of water waves,, in Proceedings of the Advanced Study Institute on Hamiltonian Dynamical Systems and Applications, (2008), 67.  doi: 10.1007/978-1-4020-6964-2_4.  Google Scholar

[7]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161.  doi: 10.1007/s002200050672.  Google Scholar

[8]

K. Du, Backward Stochastic Partial Differential Equations and their Applications,, Ph.D thesis, (2011).   Google Scholar

[9]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1.  doi: 10.1111/1467-9965.00022.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[11]

K. Frieler and C. Knoche, Solutions of Stochastic Differential Equations in Infinite Dimensional Hilbert Spaces and Their Dependence on Initial Data,, Diploma thesis, (2011), 02.   Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

W. Grecksch and H. Lisei, Stochastic Nonlinear Equations of Schrödinger Type,, Stoch. Ana. Appl., 29 (2011), 631.  doi: 10.1080/07362994.2011.581091.  Google Scholar

[14]

Y. Hu and S. Peng, Adapted solution of a backward semilinear stochastic evolution equations,, Stoch. Anal. Appl., 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[15]

N. Krylov and B. Rozovskii, On the Cauchy problem for superparabolic stochastic differential equations,, in Third Soviet-Japanese Sympos on Probability Theory, (1975), 77.   Google Scholar

[16]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications,, Stoch. Proc. Appl., 70 (1997), 59.  doi: 10.1016/S0304-4149(97)00057-4.  Google Scholar

[17]

S. Mizohata, On the Cauchy Problem,, Academic Press, (1985).   Google Scholar

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Systems Control Lett., 14 (1990), 55.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[19]

E. Pardoux and S. Peng, Backward stochastic differential equations and quaslinear parabolic partial differential equations,, in Stochastic Partial Differential Equations and their Applications (eds. B. Rozovskii and L. Boris), 176 (1992), 200.  doi: 10.1007/BFb0007334.  Google Scholar

[20]

S. Tang, Semi-linear systems of backward stochastic partial differential equations in $\mathbbR^n$,, Chin. Ann. Math., 26 (2005), 437.  doi: 10.1142/S025295990500035X.  Google Scholar

[21]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM Journal on Control Optimization, 48 (2009), 2191.  doi: 10.1137/050641508.  Google Scholar

[22]

S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations,, SIAM J. Control Optim., 36 (1998), 1596.  doi: 10.1137/S0363012996313100.  Google Scholar

[23]

S. Tang, A new partially observed stochastic maximum principle,, in Proceedings of 37th IEEE Control and Decision Conference, (1998), 2353.   Google Scholar

[24]

X. Zhou, A duality analysis on stochastic partial differential equations,, Journal of Functional Analysis, 103 (1992), 275.  doi: 10.1016/0022-1236(92)90122-Y.  Google Scholar

[25]

X. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations,, SIAM J. Control Optim., 31 (1993), 1462.  doi: 10.1137/0331068.  Google Scholar

show all references

References:
[1]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst., 315 (1983), 387.  doi: 10.1016/0016-0032(83)90059-5.  Google Scholar

[2]

A. Bensoussan, Stochastic Control of Partially Observable Systems,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511526503.  Google Scholar

[3]

J. Bismut, Conjugate convex functions in optimal stochastic control,, J. Math. Anal. Apl., 44 (1973), 384.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[4]

J. Bismut, Linear quadradic optimal stochastic control with random coefficients,, SIAM J. Control Optim., 14 (1976), 414.  doi: 10.1137/0314028.  Google Scholar

[5]

J. Bismut, An introductory approach to duality in optimal stochastic control,, SIAM Rev., 20 (1978), 62.  doi: 10.1137/1020004.  Google Scholar

[6]

W. Craiq, Transformation theory of Hamiltonian PDE and the problem of water waves,, in Proceedings of the Advanced Study Institute on Hamiltonian Dynamical Systems and Applications, (2008), 67.  doi: 10.1007/978-1-4020-6964-2_4.  Google Scholar

[7]

A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise,, Commun. Math. Phys., 205 (1999), 161.  doi: 10.1007/s002200050672.  Google Scholar

[8]

K. Du, Backward Stochastic Partial Differential Equations and their Applications,, Ph.D thesis, (2011).   Google Scholar

[9]

N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance,, Mathematical Finance, 7 (1997), 1.  doi: 10.1111/1467-9965.00022.  Google Scholar

[10]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[11]

K. Frieler and C. Knoche, Solutions of Stochastic Differential Equations in Infinite Dimensional Hilbert Spaces and Their Dependence on Initial Data,, Diploma thesis, (2011), 02.   Google Scholar

[12]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[13]

W. Grecksch and H. Lisei, Stochastic Nonlinear Equations of Schrödinger Type,, Stoch. Ana. Appl., 29 (2011), 631.  doi: 10.1080/07362994.2011.581091.  Google Scholar

[14]

Y. Hu and S. Peng, Adapted solution of a backward semilinear stochastic evolution equations,, Stoch. Anal. Appl., 9 (1991), 445.  doi: 10.1080/07362999108809250.  Google Scholar

[15]

N. Krylov and B. Rozovskii, On the Cauchy problem for superparabolic stochastic differential equations,, in Third Soviet-Japanese Sympos on Probability Theory, (1975), 77.   Google Scholar

[16]

J. Ma and J. Yong, Adapted solution of a degenerate backward SPDE, with applications,, Stoch. Proc. Appl., 70 (1997), 59.  doi: 10.1016/S0304-4149(97)00057-4.  Google Scholar

[17]

S. Mizohata, On the Cauchy Problem,, Academic Press, (1985).   Google Scholar

[18]

E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation,, Systems Control Lett., 14 (1990), 55.  doi: 10.1016/0167-6911(90)90082-6.  Google Scholar

[19]

E. Pardoux and S. Peng, Backward stochastic differential equations and quaslinear parabolic partial differential equations,, in Stochastic Partial Differential Equations and their Applications (eds. B. Rozovskii and L. Boris), 176 (1992), 200.  doi: 10.1007/BFb0007334.  Google Scholar

[20]

S. Tang, Semi-linear systems of backward stochastic partial differential equations in $\mathbbR^n$,, Chin. Ann. Math., 26 (2005), 437.  doi: 10.1142/S025295990500035X.  Google Scholar

[21]

S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations,, SIAM Journal on Control Optimization, 48 (2009), 2191.  doi: 10.1137/050641508.  Google Scholar

[22]

S. Tang, The maximum principle for partially observed optimal control of stochastic differential equations,, SIAM J. Control Optim., 36 (1998), 1596.  doi: 10.1137/S0363012996313100.  Google Scholar

[23]

S. Tang, A new partially observed stochastic maximum principle,, in Proceedings of 37th IEEE Control and Decision Conference, (1998), 2353.   Google Scholar

[24]

X. Zhou, A duality analysis on stochastic partial differential equations,, Journal of Functional Analysis, 103 (1992), 275.  doi: 10.1016/0022-1236(92)90122-Y.  Google Scholar

[25]

X. Zhou, On the necessary conditions of optimal controls for stochastic partial differential equations,, SIAM J. Control Optim., 31 (1993), 1462.  doi: 10.1137/0331068.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]