• Previous Article
    Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations
  • DCDS Home
  • This Issue
  • Next Article
    Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions
November  2015, 35(11): 5413-5433. doi: 10.3934/dcds.2015.35.5413

Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing

1. 

Department of mathematics, Tongji University, Shanghai 200092

2. 

Department of Mathematics, Tongji University, Shanghai 200092, China, China

3. 

Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom

Received  October 2013 Revised  November 2014 Published  May 2015

We consider the valuation of a block of perpetual ESOs and the optimal exercise decision for an employee endowed with them and with trading restrictions. A fluid model is proposed to characterize the exercise process. The objective is to maximize the overall discount returns for the employee through exercising the options over time. The optimal value function is defined as the grant-date fair value of the block of options, and is then shown by the dynamic programming principle to be a continuous constrained viscosity solution to the associated Hamilton-Jacobi-Bellman (HJB) equation, which is a fully nonlinear second order elliptic partial differential equation (PDE) in the plane. We prove the comparison principle and the uniqueness. The numerical simulation is discussed and the corresponding optimal decision turns out to be a threshold-style strategy. These results provide an appropriate method to estimate the cost of the ESOs for the company and also offer favorable suggestions on selecting right moments to exercise the options over time for the employee.
Citation: Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413
References:
[1]

B. Bian, M. Dai, L. Jiang, Q. Zhang and Y. Zhong, Optimal decision for selling an illiquid stock,, J. Optim. Theory Appl., 151 (2011), 402. doi: 10.1007/s10957-011-9897-0. Google Scholar

[2]

J. Carpenter, The exercise and valuation of executive stock options,, J. Financial Economics, 48 (1998), 127. Google Scholar

[3]

M. G. Crandall, H. Ishii and P. L. Lions, A user's guide to viscosity solutions,, Bulletin Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[4]

W. H. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control,, Applications of Mathematics, (1975). Google Scholar

[5]

B. J. Hall and K. J. Murphy, Stock option for undiversified executives,, J. Accounting Economics, 33 (2002), 3. doi: 10.1016/S0165-4101(01)00050-7. Google Scholar

[6]

J. Ingersoll, The subjective and objective evaluation of incentive stock options,, J. Business, 79 (2006), 453. Google Scholar

[7]

A. Jain and A. Subramanian, The intertemporal exercese and valuation of employee options,, Accounting Review, 79 (2004), 705. doi: 10.2308/accr.2004.79.3.705. Google Scholar

[8]

L. Jiang, Mathematical Modeling and Methods of Option Pricing,, World Scientific Publishing Co., (2005). doi: 10.1142/5855. Google Scholar

[9]

R. Lambert, D. Larchker and R. Verrecchia, Portfolio considerations in valuing executive compensation,, J. Accounting Research, 29 (1991), 129. doi: 10.2307/2491032. Google Scholar

[10]

T. Leung and R. Sircar, Accounting for risk aversion, vesting, job termination risk and multiple exercises in valuation of employee stock options,, Math. Finance, 19 (2009), 99. doi: 10.1111/j.1467-9965.2008.00359.x. Google Scholar

[11]

L. C. G. Rogers and J. Scheinkman, Optimal exercise of executive stock options,, Finance Stoch., 11 (2007), 357. doi: 10.1007/s00780-007-0041-9. Google Scholar

show all references

References:
[1]

B. Bian, M. Dai, L. Jiang, Q. Zhang and Y. Zhong, Optimal decision for selling an illiquid stock,, J. Optim. Theory Appl., 151 (2011), 402. doi: 10.1007/s10957-011-9897-0. Google Scholar

[2]

J. Carpenter, The exercise and valuation of executive stock options,, J. Financial Economics, 48 (1998), 127. Google Scholar

[3]

M. G. Crandall, H. Ishii and P. L. Lions, A user's guide to viscosity solutions,, Bulletin Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[4]

W. H. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control,, Applications of Mathematics, (1975). Google Scholar

[5]

B. J. Hall and K. J. Murphy, Stock option for undiversified executives,, J. Accounting Economics, 33 (2002), 3. doi: 10.1016/S0165-4101(01)00050-7. Google Scholar

[6]

J. Ingersoll, The subjective and objective evaluation of incentive stock options,, J. Business, 79 (2006), 453. Google Scholar

[7]

A. Jain and A. Subramanian, The intertemporal exercese and valuation of employee options,, Accounting Review, 79 (2004), 705. doi: 10.2308/accr.2004.79.3.705. Google Scholar

[8]

L. Jiang, Mathematical Modeling and Methods of Option Pricing,, World Scientific Publishing Co., (2005). doi: 10.1142/5855. Google Scholar

[9]

R. Lambert, D. Larchker and R. Verrecchia, Portfolio considerations in valuing executive compensation,, J. Accounting Research, 29 (1991), 129. doi: 10.2307/2491032. Google Scholar

[10]

T. Leung and R. Sircar, Accounting for risk aversion, vesting, job termination risk and multiple exercises in valuation of employee stock options,, Math. Finance, 19 (2009), 99. doi: 10.1111/j.1467-9965.2008.00359.x. Google Scholar

[11]

L. C. G. Rogers and J. Scheinkman, Optimal exercise of executive stock options,, Finance Stoch., 11 (2007), 357. doi: 10.1007/s00780-007-0041-9. Google Scholar

[1]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[2]

Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567

[3]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[4]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[5]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[6]

Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations & Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281

[7]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[10]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[11]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[12]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[13]

Michael Grinfeld, Harbir Lamba, Rod Cross. A mesoscopic stock market model with hysteretic agents. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 403-415. doi: 10.3934/dcdsb.2013.18.403

[14]

Duy Nguyen, Jingzhi Tie, Qing Zhang. Stock trading rules under a switchable market. Mathematical Control & Related Fields, 2013, 3 (2) : 209-231. doi: 10.3934/mcrf.2013.3.209

[15]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[16]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[17]

Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

[18]

Xiaoxi Li, Marc Quincampoix, Jérôme Renault. Limit value for optimal control with general means. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2113-2132. doi: 10.3934/dcds.2016.36.2113

[19]

Radoslaw Pytlak. Numerical procedure for optimal control of higher index DAEs. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 647-670. doi: 10.3934/dcds.2011.29.647

[20]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]