Citation: |
[1] |
A. Bensoussan and J. L. Lions, Impulse Control and Quasivariational Inequalities, Gauthier-Villars, Montrouge, 1984. |
[2] |
R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations, Acta Math. Appl. Sin. Engl. Ser., 27 (2011), 647-678.doi: 10.1007/s10255-011-0068-8. |
[3] |
R. Carmona and M. Ludkovski, Pricing asset scheduling flexibility using optimal switching, Appl. Math. Finance, 15 (2008), 405-447.doi: 10.1080/13504860802170507. |
[4] |
J. Cvitanic and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Ann. Probab., 24 (1996), 2024-2056.doi: 10.1214/aop/1041903216. |
[5] |
P. Dupuis and H. Ishii, SDEs with oblique reflection on nonsmooth domains, Ann. Probab., 21 (1993), 554-580.doi: 10.1214/aop/1176989415. |
[6] |
N. El Karoui, Les aspects probabilistes du contrôle stochastique, Ninth Saint Flour Probability Summer School - 1979 (Saint Flour, 1979), Lecture Notes in Math., 876, Springer, Berlin, 1981, 73-238. |
[7] |
N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez, Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., 25 (1997), 702-737.doi: 10.1214/aop/1024404416. |
[8] |
A. Gegout-Petit and E. Pardoux, Equations différentielles stochastiques rétrogrades réfléchies dans un convexe, Stochastics Stochastic Rep., 57 (1996), 111-128.doi: 10.1080/17442509608834054. |
[9] |
S. Hamadène and M. Jeanblanc, On the starting and stopping problem: Application in reversible investments, Math. Oper. Res., 32 (2007), 182-192.doi: 10.1287/moor.1060.0228. |
[10] |
Y. Hu and S. Peng, On the comparison theorem for multi-dimensional BSDEs, C. R. Math. Acad. Sci. Paris, 343 (2006), 135-140.doi: 10.1016/j.crma.2006.05.019. |
[11] |
Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal switching, Probab. Theory Related Fields, 147 (2010), 89-121.doi: 10.1007/s00440-009-0202-1. |
[12] |
P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math., 37 (1984), 511-537.doi: 10.1002/cpa.3160370408. |
[13] |
P. A. Meyer, Un cours sur les intégrales stochastiques. Séminaire de Probabilités, X, Lecture Notes in Math., 511, Springer, Berlin, 1976, 245-400. |
[14] |
S. Peng and M. Xu, The smallest $g$-supermartingale and reflected BSDE with single and double $L^2$ obstacles, Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 605-630.doi: 10.1016/j.anihpb.2004.12.002. |
[15] |
H. Pham, V. Ly Vath and X. Y. Zhou, Optimal switching over multiple regimes, SIAM J. Control Optim., 48 (2009), 2217-2253.doi: 10.1137/070709372. |
[16] |
S. Ramasubramanian, Reflected backward stochastic differential equations in an orthant, Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 347-360.doi: 10.1007/BF02829759. |
[17] |
S. Tang and S. Hou, Switching games of stochastic differential systems, SIAM J. Control Optim., 46 (2007), 900-929.doi: 10.1137/050642204. |
[18] |
S. Tang and J. Yong, Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach, Stochastics Stochastics Rep., 45 (1993), 145-176.doi: 10.1080/17442509308833860. |
[19] |
S. Tang, W. Zhong and H. Koo, Optimal switching of one-dimensional reflected BSDEs and associated multidimensional BSDEs with oblique reflection, SIAM J. Control Optim., 49 (2011), 2279-2317.doi: 10.1137/080738349. |