November  2015, 35(11): 5499-5519. doi: 10.3934/dcds.2015.35.5499

A stochastic maximum principle with dissipativity conditions

1. 

Dipartimento di Matematica, Università di Pavia, Via Ferrata, 1. 27100, Pavia, Italy

Received  September 2013 Revised  October 2014 Published  May 2015

In this paper we prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a finite dimensional stochastic differential equation, driven by a multidimensional Wiener process. We drop the usual Lipschitz assumption on the drift term and substitute it with dissipativity conditions, allowing polynomial growth. The control enters both the drift and the diffusion term and takes values in a general metric space.
Citation: Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499
References:
[1]

K. Bahlali, B. Mezerdi and Y. Ouknine, The maximum principle for optimal control of diffusions with non-smooth coefficients,, Stochastics Stochastics Rep, 57 (1996), 303.  doi: 10.1080/17442509608834065.  Google Scholar

[2]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst, 315 (1983), 387.  doi: 10.1016/0016-0032(83)90059-5.  Google Scholar

[3]

P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, $L^p$ solutions of backward stochastic differential equations,, Stochastic Process. Appl., 108 (2001), 604.   Google Scholar

[4]

P. Briand and F. Confortola, Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators,, Appl. Math. Optim., 57 (2008), 149.  doi: 10.1007/s00245-007-9014-9.  Google Scholar

[5]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.  doi: 10.1137/S0363012992240722.  Google Scholar

[6]

G. Da Prato, M. Iannelli and L. Tubaro, Dissipative functions and finite-dimensional stochastic differential equations,, J. Math. Pures Appl., 57 (1978), 173.   Google Scholar

[7]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations,, SIAM J. Control Optim., 51 (2013), 4343.  doi: 10.1137/120882433.  Google Scholar

[8]

K. Du and Q. Meng, Stochastic maximum principle for infinite dimensional control systems, preprint,, , ().   Google Scholar

[9]

M. Fuhrman, Y. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs,, C. R. Math. Acad. Sci. Paris, 350 (2012), 683.  doi: 10.1016/j.crma.2012.07.009.  Google Scholar

[10]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems,, Stochastics Stochastics Rep., 33 (1990), 159.  doi: 10.1080/17442509008833671.  Google Scholar

[11]

Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions,, preprint, ().   Google Scholar

[12]

N. I. Mahmudov, General necessary conditions of optimality for stochastic systems with controllable diffusion,, (in Russian) Proc. Workshop Statistics and Control of Random Processes, (1989), 135.   Google Scholar

[13]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions,, $2^{nd}$ edition, (2007).  doi: 10.1007/978-3-540-69826-5.  Google Scholar

[14]

E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs,, Nonlinear Analysis, 528 (1999), 503.   Google Scholar

[15]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[16]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations,, Stochastics Stochastics Rep., 37 (1991), 61.  doi: 10.1080/17442509108833727.  Google Scholar

[17]

S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps,, SIAM J. Control Optim., 32 (1994), 1447.  doi: 10.1137/S0363012992233858.  Google Scholar

[18]

S. Tang and X. Li, Maximum principle for optimal control of distributed parameter stochastic systems with random jumps,, Lecture Notes in Pure and Applied Mathematics, 152 (1994), 867.   Google Scholar

[19]

J. Yong and X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[20]

X. Y. Zhou, A unified treatment of maximum principle and dynamic programming in stochastic controls,, Stochastics Stochastics Rep., 36 (1991), 137.  doi: 10.1080/17442509108833715.  Google Scholar

show all references

References:
[1]

K. Bahlali, B. Mezerdi and Y. Ouknine, The maximum principle for optimal control of diffusions with non-smooth coefficients,, Stochastics Stochastics Rep, 57 (1996), 303.  doi: 10.1080/17442509608834065.  Google Scholar

[2]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst, 315 (1983), 387.  doi: 10.1016/0016-0032(83)90059-5.  Google Scholar

[3]

P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, $L^p$ solutions of backward stochastic differential equations,, Stochastic Process. Appl., 108 (2001), 604.   Google Scholar

[4]

P. Briand and F. Confortola, Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators,, Appl. Math. Optim., 57 (2008), 149.  doi: 10.1007/s00245-007-9014-9.  Google Scholar

[5]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.  doi: 10.1137/S0363012992240722.  Google Scholar

[6]

G. Da Prato, M. Iannelli and L. Tubaro, Dissipative functions and finite-dimensional stochastic differential equations,, J. Math. Pures Appl., 57 (1978), 173.   Google Scholar

[7]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations,, SIAM J. Control Optim., 51 (2013), 4343.  doi: 10.1137/120882433.  Google Scholar

[8]

K. Du and Q. Meng, Stochastic maximum principle for infinite dimensional control systems, preprint,, , ().   Google Scholar

[9]

M. Fuhrman, Y. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs,, C. R. Math. Acad. Sci. Paris, 350 (2012), 683.  doi: 10.1016/j.crma.2012.07.009.  Google Scholar

[10]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems,, Stochastics Stochastics Rep., 33 (1990), 159.  doi: 10.1080/17442509008833671.  Google Scholar

[11]

Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions,, preprint, ().   Google Scholar

[12]

N. I. Mahmudov, General necessary conditions of optimality for stochastic systems with controllable diffusion,, (in Russian) Proc. Workshop Statistics and Control of Random Processes, (1989), 135.   Google Scholar

[13]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions,, $2^{nd}$ edition, (2007).  doi: 10.1007/978-3-540-69826-5.  Google Scholar

[14]

E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs,, Nonlinear Analysis, 528 (1999), 503.   Google Scholar

[15]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[16]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations,, Stochastics Stochastics Rep., 37 (1991), 61.  doi: 10.1080/17442509108833727.  Google Scholar

[17]

S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps,, SIAM J. Control Optim., 32 (1994), 1447.  doi: 10.1137/S0363012992233858.  Google Scholar

[18]

S. Tang and X. Li, Maximum principle for optimal control of distributed parameter stochastic systems with random jumps,, Lecture Notes in Pure and Applied Mathematics, 152 (1994), 867.   Google Scholar

[19]

J. Yong and X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[20]

X. Y. Zhou, A unified treatment of maximum principle and dynamic programming in stochastic controls,, Stochastics Stochastics Rep., 36 (1991), 137.  doi: 10.1080/17442509108833715.  Google Scholar

[1]

Liangquan Zhang, Qing Zhou, Juan Yang. Necessary condition for optimal control of doubly stochastic systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020002

[2]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[3]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[4]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[5]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[6]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[7]

Xiao-Qian Jiang, Lun-Chuan Zhang. A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-978. doi: 10.3934/dcdss.2019065

[8]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[9]

Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[12]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[13]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[14]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[15]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[16]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[17]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[18]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[19]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[20]

Shahlar F. Maharramov. Necessary optimality conditions for switching control problems. Journal of Industrial & Management Optimization, 2010, 6 (1) : 47-55. doi: 10.3934/jimo.2010.6.47

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]