November  2015, 35(11): 5499-5519. doi: 10.3934/dcds.2015.35.5499

A stochastic maximum principle with dissipativity conditions

1. 

Dipartimento di Matematica, Università di Pavia, Via Ferrata, 1. 27100, Pavia, Italy

Received  September 2013 Revised  October 2014 Published  May 2015

In this paper we prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a finite dimensional stochastic differential equation, driven by a multidimensional Wiener process. We drop the usual Lipschitz assumption on the drift term and substitute it with dissipativity conditions, allowing polynomial growth. The control enters both the drift and the diffusion term and takes values in a general metric space.
Citation: Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499
References:
[1]

K. Bahlali, B. Mezerdi and Y. Ouknine, The maximum principle for optimal control of diffusions with non-smooth coefficients,, Stochastics Stochastics Rep, 57 (1996), 303.  doi: 10.1080/17442509608834065.  Google Scholar

[2]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst, 315 (1983), 387.  doi: 10.1016/0016-0032(83)90059-5.  Google Scholar

[3]

P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, $L^p$ solutions of backward stochastic differential equations,, Stochastic Process. Appl., 108 (2001), 604.   Google Scholar

[4]

P. Briand and F. Confortola, Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators,, Appl. Math. Optim., 57 (2008), 149.  doi: 10.1007/s00245-007-9014-9.  Google Scholar

[5]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.  doi: 10.1137/S0363012992240722.  Google Scholar

[6]

G. Da Prato, M. Iannelli and L. Tubaro, Dissipative functions and finite-dimensional stochastic differential equations,, J. Math. Pures Appl., 57 (1978), 173.   Google Scholar

[7]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations,, SIAM J. Control Optim., 51 (2013), 4343.  doi: 10.1137/120882433.  Google Scholar

[8]

K. Du and Q. Meng, Stochastic maximum principle for infinite dimensional control systems, preprint,, , ().   Google Scholar

[9]

M. Fuhrman, Y. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs,, C. R. Math. Acad. Sci. Paris, 350 (2012), 683.  doi: 10.1016/j.crma.2012.07.009.  Google Scholar

[10]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems,, Stochastics Stochastics Rep., 33 (1990), 159.  doi: 10.1080/17442509008833671.  Google Scholar

[11]

Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions,, preprint, ().   Google Scholar

[12]

N. I. Mahmudov, General necessary conditions of optimality for stochastic systems with controllable diffusion,, (in Russian) Proc. Workshop Statistics and Control of Random Processes, (1989), 135.   Google Scholar

[13]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions,, $2^{nd}$ edition, (2007).  doi: 10.1007/978-3-540-69826-5.  Google Scholar

[14]

E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs,, Nonlinear Analysis, 528 (1999), 503.   Google Scholar

[15]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[16]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations,, Stochastics Stochastics Rep., 37 (1991), 61.  doi: 10.1080/17442509108833727.  Google Scholar

[17]

S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps,, SIAM J. Control Optim., 32 (1994), 1447.  doi: 10.1137/S0363012992233858.  Google Scholar

[18]

S. Tang and X. Li, Maximum principle for optimal control of distributed parameter stochastic systems with random jumps,, Lecture Notes in Pure and Applied Mathematics, 152 (1994), 867.   Google Scholar

[19]

J. Yong and X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[20]

X. Y. Zhou, A unified treatment of maximum principle and dynamic programming in stochastic controls,, Stochastics Stochastics Rep., 36 (1991), 137.  doi: 10.1080/17442509108833715.  Google Scholar

show all references

References:
[1]

K. Bahlali, B. Mezerdi and Y. Ouknine, The maximum principle for optimal control of diffusions with non-smooth coefficients,, Stochastics Stochastics Rep, 57 (1996), 303.  doi: 10.1080/17442509608834065.  Google Scholar

[2]

A. Bensoussan, Stochastic maximum principle for distributed parameter systems,, J. Franklin Inst, 315 (1983), 387.  doi: 10.1016/0016-0032(83)90059-5.  Google Scholar

[3]

P. Briand, B. Delyon, Y. Hu, E. Pardoux and L. Stoica, $L^p$ solutions of backward stochastic differential equations,, Stochastic Process. Appl., 108 (2001), 604.   Google Scholar

[4]

P. Briand and F. Confortola, Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators,, Appl. Math. Optim., 57 (2008), 149.  doi: 10.1007/s00245-007-9014-9.  Google Scholar

[5]

A. Cadenillas and I. Karatzas, The stochastic maximum principle for linear convex optimal control with random coefficients,, SIAM J. Control Optim., 33 (1995), 590.  doi: 10.1137/S0363012992240722.  Google Scholar

[6]

G. Da Prato, M. Iannelli and L. Tubaro, Dissipative functions and finite-dimensional stochastic differential equations,, J. Math. Pures Appl., 57 (1978), 173.   Google Scholar

[7]

K. Du and Q. Meng, A maximum principle for optimal control of stochastic evolution equations,, SIAM J. Control Optim., 51 (2013), 4343.  doi: 10.1137/120882433.  Google Scholar

[8]

K. Du and Q. Meng, Stochastic maximum principle for infinite dimensional control systems, preprint,, , ().   Google Scholar

[9]

M. Fuhrman, Y. Hu and G. Tessitore, Stochastic maximum principle for optimal control of SPDEs,, C. R. Math. Acad. Sci. Paris, 350 (2012), 683.  doi: 10.1016/j.crma.2012.07.009.  Google Scholar

[10]

Y. Hu and S. Peng, Maximum principle for semilinear stochastic evolution control systems,, Stochastics Stochastics Rep., 33 (1990), 159.  doi: 10.1080/17442509008833671.  Google Scholar

[11]

Q. Lü and X. Zhang, General Pontryagin-type stochastic maximum principle and backward stochastic evolution equations in infinite dimensions,, preprint, ().   Google Scholar

[12]

N. I. Mahmudov, General necessary conditions of optimality for stochastic systems with controllable diffusion,, (in Russian) Proc. Workshop Statistics and Control of Random Processes, (1989), 135.   Google Scholar

[13]

B. Øksendal and A. Sulem, Applied Stochastic Control of Jump Diffusions,, $2^{nd}$ edition, (2007).  doi: 10.1007/978-3-540-69826-5.  Google Scholar

[14]

E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs,, Nonlinear Analysis, 528 (1999), 503.   Google Scholar

[15]

S. Peng, A general stochastic maximum principle for optimal control problems,, SIAM J. Control Optim., 28 (1990), 966.  doi: 10.1137/0328054.  Google Scholar

[16]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations,, Stochastics Stochastics Rep., 37 (1991), 61.  doi: 10.1080/17442509108833727.  Google Scholar

[17]

S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps,, SIAM J. Control Optim., 32 (1994), 1447.  doi: 10.1137/S0363012992233858.  Google Scholar

[18]

S. Tang and X. Li, Maximum principle for optimal control of distributed parameter stochastic systems with random jumps,, Lecture Notes in Pure and Applied Mathematics, 152 (1994), 867.   Google Scholar

[19]

J. Yong and X. Y. Zhou, Stochastic Controls. Hamiltonian Systems and HJB Equations,, Springer-Verlag, (1999).  doi: 10.1007/978-1-4612-1466-3.  Google Scholar

[20]

X. Y. Zhou, A unified treatment of maximum principle and dynamic programming in stochastic controls,, Stochastics Stochastics Rep., 36 (1991), 137.  doi: 10.1080/17442509108833715.  Google Scholar

[1]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[8]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[12]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[15]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]