-
Previous Article
Harmonic functions in union of chambers
- DCDS Home
- This Issue
-
Next Article
Contemporary PDEs between theory and applications
Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian
1. | Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, UFR des Sciences, 33, rue Saint-Leu, 80039, Amiens Cedex 1, France |
References:
[1] |
S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2nd edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-8137-3. |
[2] |
C. Bandle, Asymptotic behavior of large solutions of elliptic equations, Analele Universităţii din Craiova. Seria Matematică-Informatică, 32 (2005), 1-8. |
[3] |
K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains, Hiroshima Mathematical Journal, 29 (1999), 227-243. |
[4] |
K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Mathematica, 123 (1997), 43-80. |
[5] |
K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential Analysis of Stable Processes and Its Extensions, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-02141-1. |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving the fractional Laplacian, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, in press, (2014).
doi: 10.1016/j.anihpc.2014.08.001. |
[8] |
H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, Journal of Differential Equations, 257 (2014), 1457-1486.
doi: 10.1016/j.jde.2014.05.012. |
[9] |
Z.-Q. Chen, Multidimensional symmetric stable processes, The Korean Journal of Computational & Applied Mathematics, 6 (1999), 227-266. |
[10] |
P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 19 (1987), 189-194. |
[11] |
O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry, Journal of Differential Equations, 249 (2010), 931-964.
doi: 10.1016/j.jde.2010.02.023. |
[12] |
O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions, Journal of Mathematical Analysis and Applications, 395 (2012), 806-812.
doi: 10.1016/j.jmaa.2012.05.085. |
[13] |
J.-S. Dhersin and J.-F. Le Gall, Wiener's test for super-Brownian motion and the Brownian snake, Probability Theory and Related Fields, 108 (1997), 103-129.
doi: 10.1007/s004400050103. |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[15] |
S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Advanced Nonlinear Studies, 7 (2007), 271-298. |
[16] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2011.
doi: 10.1201/b10802. |
[17] |
P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations, Asymptotic Analysis, 78 (2012), 123-144. |
[18] |
G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018. |
[19] |
K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data, Publicacions Matemàtiques, 55 (2011), 151-161.
doi: 10.5565/PUBLMAT_55111_07. |
[20] |
J. B. Keller, On solutions of $\Delta u=f(u)$, Communications on Pure and Applied Mathematics, 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[21] |
T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data, Journal of Functional Analysis, 265 (2013), 890-925.
doi: 10.1016/j.jfa.2013.05.028. |
[22] |
N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York, 1972. |
[23] |
M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, Journal of Evolution Equations, 3 (2003), 637-652.
doi: 10.1007/s00028-003-0122-y. |
[24] |
M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter, Berlin/Boston, 2014. |
[25] |
M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions, Proceedings of the American Mathematical Society, 136 (2008), 2429-2438.
doi: 10.1090/S0002-9939-08-09231-9. |
[26] |
B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Memoirs of the American Mathematical Society, 168 (2004), xvi+121 pp.
doi: 10.1090/memo/0798. |
[27] |
R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific Journal of Mathematics, 7 (1957), 1641-1647. |
[28] |
M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. (Szeged), 9 (1938), 1-42. |
[29] |
X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées (9), 101 (2014), 275-302. |
[30] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications on Pure and Applied Mathematics, 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[31] |
G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montreal, Québec, 1966. |
show all references
References:
[1] |
S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, 2nd edition, Graduate Texts in Mathematics, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4757-8137-3. |
[2] |
C. Bandle, Asymptotic behavior of large solutions of elliptic equations, Analele Universităţii din Craiova. Seria Matematică-Informatică, 32 (2005), 1-8. |
[3] |
K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains, Hiroshima Mathematical Journal, 29 (1999), 227-243. |
[4] |
K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Mathematica, 123 (1997), 43-80. |
[5] |
K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential Analysis of Stable Processes and Its Extensions, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-02141-1. |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving the fractional Laplacian, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, in press, (2014).
doi: 10.1016/j.anihpc.2014.08.001. |
[8] |
H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures, Journal of Differential Equations, 257 (2014), 1457-1486.
doi: 10.1016/j.jde.2014.05.012. |
[9] |
Z.-Q. Chen, Multidimensional symmetric stable processes, The Korean Journal of Computational & Applied Mathematics, 6 (1999), 227-266. |
[10] |
P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 19 (1987), 189-194. |
[11] |
O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry, Journal of Differential Equations, 249 (2010), 931-964.
doi: 10.1016/j.jde.2010.02.023. |
[12] |
O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions, Journal of Mathematical Analysis and Applications, 395 (2012), 806-812.
doi: 10.1016/j.jmaa.2012.05.085. |
[13] |
J.-S. Dhersin and J.-F. Le Gall, Wiener's test for super-Brownian motion and the Brownian snake, Probability Theory and Related Fields, 108 (1997), 103-129.
doi: 10.1007/s004400050103. |
[14] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[15] |
S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Advanced Nonlinear Studies, 7 (2007), 271-298. |
[16] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC, Boca Raton, FL, 2011.
doi: 10.1201/b10802. |
[17] |
P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations, Asymptotic Analysis, 78 (2012), 123-144. |
[18] |
G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators, Advances in Mathematics, 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018. |
[19] |
K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data, Publicacions Matemàtiques, 55 (2011), 151-161.
doi: 10.5565/PUBLMAT_55111_07. |
[20] |
J. B. Keller, On solutions of $\Delta u=f(u)$, Communications on Pure and Applied Mathematics, 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[21] |
T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data, Journal of Functional Analysis, 265 (2013), 890-925.
doi: 10.1016/j.jfa.2013.05.028. |
[22] |
N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York, 1972. |
[23] |
M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, Journal of Evolution Equations, 3 (2003), 637-652.
doi: 10.1007/s00028-003-0122-y. |
[24] |
M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures, De Gruyter, Berlin/Boston, 2014. |
[25] |
M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions, Proceedings of the American Mathematical Society, 136 (2008), 2429-2438.
doi: 10.1090/S0002-9939-08-09231-9. |
[26] |
B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation, Memoirs of the American Mathematical Society, 168 (2004), xvi+121 pp.
doi: 10.1090/memo/0798. |
[27] |
R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific Journal of Mathematics, 7 (1957), 1641-1647. |
[28] |
M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. (Szeged), 9 (1938), 1-42. |
[29] |
X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, Journal de Mathématiques Pures et Appliquées (9), 101 (2014), 275-302. |
[30] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications on Pure and Applied Mathematics, 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[31] |
G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus, Séminaire de Mathématiques Supérieures, No. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montreal, Québec, 1966. |
[1] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[2] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[3] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[4] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[5] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[6] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[7] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[8] |
Juan Dávila, Manuel Del Pino, Catalina Pesce, Juncheng Wei. Blow-up for the 3-dimensional axially symmetric harmonic map flow into $ S^2 $. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6913-6943. doi: 10.3934/dcds.2019237 |
[9] |
Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047 |
[10] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[11] |
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 |
[12] |
Qiang Lin, Xueteng Tian, Runzhang Xu, Meina Zhang. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2095-2107. doi: 10.3934/dcdss.2020160 |
[13] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[14] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[15] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[16] |
Mingqi Xiang, Die Hu. Existence and blow-up of solutions for fractional wave equations of Kirchhoff type with viscoelasticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4609-4629. doi: 10.3934/dcdss.2021125 |
[17] |
Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121 |
[18] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[19] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
[20] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]