December  2015, 35(12): 5609-5629. doi: 10.3934/dcds.2015.35.5609

Harmonic functions in union of chambers

1. 

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi, 55 - 20125 Milano, Italy

2. 

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino

Received  March 2014 Published  May 2015

We characterize the set of harmonic functions with Dirichlet boundary conditions in unbounded domains which are union of two different chambers. We analyse the asymptotic behavior of the solutions in connection with the changes in the domain's geometry; we classify all (possibly sign-changing) infinite energy solutions having given asymptotic frequency at the infinite ends of the domain; finally we sketch the case of several different chambers.
Citation: Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609
References:
[1]

L. Abatangelo, V. Felli and S. Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence,, Journal of Functional Analysis, 266 (2014), 3632.  doi: 10.1016/j.jfa.2013.11.019.  Google Scholar

[2]

L. Abatangelo, V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part II,, Journal of Differential Equations, 256 (2014), 3301.  doi: 10.1016/j.jde.2014.02.010.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Academic Press 2003., (2003).   Google Scholar

[4]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761.  doi: 10.3934/nhm.2007.2.761.  Google Scholar

[5]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752.  doi: 10.1051/cocv:2006020.  Google Scholar

[6]

B. E. J. Dahlberg, Estimates for harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275.  doi: 10.1007/BF00280445.  Google Scholar

[7]

V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part I,, J. Differential Equations, 255 (2013), 633.  doi: 10.1016/j.jde.2013.04.017.  Google Scholar

[8]

T. Gilbarg, Elliptic Partial Differential Equations,, Springer, (2001).   Google Scholar

[9]

V. Isakov, Inverse problems for Partial Differential Equations,, Springer, (2006).   Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[11]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995).   Google Scholar

[12]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer, (1996).  doi: 10.1007/978-1-4612-5338-9.  Google Scholar

[13]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585.  doi: 10.2977/prims/1195170848.  Google Scholar

[14]

Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification,, Duke Math. J., 57 (1988), 955.  doi: 10.1215/S0012-7094-88-05743-2.  Google Scholar

[15]

Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains,, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations (Knoxville, (1987), 218.   Google Scholar

[16]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst.H. Poincaré Anal. Non Linéaire, 11 (1994), 313.   Google Scholar

[17]

R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge Studies in Advanced Mathematics, (1995).  doi: 10.1017/CBO9780511526244.  Google Scholar

[18]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations,, Springer, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[19]

W. Rudin, Real and Complex Analysis,, McGraw-Hill, (1987).   Google Scholar

show all references

References:
[1]

L. Abatangelo, V. Felli and S. Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence,, Journal of Functional Analysis, 266 (2014), 3632.  doi: 10.1016/j.jfa.2013.11.019.  Google Scholar

[2]

L. Abatangelo, V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part II,, Journal of Differential Equations, 256 (2014), 3301.  doi: 10.1016/j.jde.2014.02.010.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Academic Press 2003., (2003).   Google Scholar

[4]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761.  doi: 10.3934/nhm.2007.2.761.  Google Scholar

[5]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752.  doi: 10.1051/cocv:2006020.  Google Scholar

[6]

B. E. J. Dahlberg, Estimates for harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275.  doi: 10.1007/BF00280445.  Google Scholar

[7]

V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part I,, J. Differential Equations, 255 (2013), 633.  doi: 10.1016/j.jde.2013.04.017.  Google Scholar

[8]

T. Gilbarg, Elliptic Partial Differential Equations,, Springer, (2001).   Google Scholar

[9]

V. Isakov, Inverse problems for Partial Differential Equations,, Springer, (2006).   Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[11]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995).   Google Scholar

[12]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer, (1996).  doi: 10.1007/978-1-4612-5338-9.  Google Scholar

[13]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585.  doi: 10.2977/prims/1195170848.  Google Scholar

[14]

Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification,, Duke Math. J., 57 (1988), 955.  doi: 10.1215/S0012-7094-88-05743-2.  Google Scholar

[15]

Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains,, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations (Knoxville, (1987), 218.   Google Scholar

[16]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst.H. Poincaré Anal. Non Linéaire, 11 (1994), 313.   Google Scholar

[17]

R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge Studies in Advanced Mathematics, (1995).  doi: 10.1017/CBO9780511526244.  Google Scholar

[18]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations,, Springer, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[19]

W. Rudin, Real and Complex Analysis,, McGraw-Hill, (1987).   Google Scholar

[1]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[4]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]