December  2015, 35(12): 5631-5663. doi: 10.3934/dcds.2015.35.5631

Density estimates for vector minimizers and applications

1. 

Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece

2. 

Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy

Received  April 2014 Revised  September 2014 Published  May 2015

We extend the Caffarelli--Córdoba estimates to the vector case (L. Caffarelli and A. Córdoba, Uniform Convergence of a singular perturbation problem, Comm. Pure Appl. Math. 48 (1995)). In particular, we establish lower codimension density estimates. These are useful for studying the hierarchical structure of minimal solutions. We also give applications.
Citation: Nicholas D. Alikakos, Giorgio Fusco. Density estimates for vector minimizers and applications. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5631-5663. doi: 10.3934/dcds.2015.35.5631
References:
[1]

Calc. Var. Part. Diff. Eqs., 5 (1997), 359-390. doi: 10.1007/s005260050071.  Google Scholar

[2]

Proc. Amer. Math. Soc., 139 (2011), 153-162. doi: 10.1090/S0002-9939-2010-10453-7.  Google Scholar

[3]

In Geometric Partial Differential Equations (eds. M. Novaga and G. Orlandi), Publications Scuola Normale Superiore, CRM Series, 15, Birkhäuser, 2013, 1-31. doi: 10.1007/978-88-7642-473-1_1.  Google Scholar

[4]

Comm. Partial Diff. Eqs, 37 (2012), 2093-2115. doi: 10.1080/03605302.2012.721851.  Google Scholar

[5]

Arch. Rat. Mech. Analysis, 202 (2011), 567-597. doi: 10.1007/s00205-011-0441-z.  Google Scholar

[6]

N. D. Alikakos and G. Fusco, In, preparation., ().   Google Scholar

[7]

Indiana Univ. Math. Journal, 57 (2008), 1871-1906. doi: 10.1512/iumj.2008.57.3181.  Google Scholar

[8]

Ann. Scuola Norm Sup. Pisa Cl. Sci., 9 (2009), 1-26.  Google Scholar

[9]

N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves,, to appear in JEMS, ().   Google Scholar

[10]

Ann. Inst. Henri Poincare, 7 (1990), 67-90.  Google Scholar

[11]

Birkhäuser, 1994. doi: 10.1007/978-1-4612-0287-5.  Google Scholar

[12]

Arch. Rat. Mech. Analysis, 124 (1993), 355-379. doi: 10.1007/BF00375607.  Google Scholar

[13]

Comm. Pure. Appl. Math., 49 (1996), 677-715. doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6.  Google Scholar

[14]

Comm. Pure Appl. Math., 48 (1995), 1-12. doi: 10.1002/cpa.3160480101.  Google Scholar

[15]

Journal Amer. Math. Society , 21 (2008), 847-862. doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[16]

Archive for Rational Mechanics and Analysis, 216 (2015), 153-191. doi: 10.1007/s00205-014-0804-3.  Google Scholar

[17]

Graduate Studies in Mathematics, AMS, 1998. doi: 10.1090/gsm/019.  Google Scholar

[18]

Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.  Google Scholar

[19]

J. Funct. Anal., 214 (2004), 386-395. doi: 10.1016/j.jfa.2003.07.012.  Google Scholar

[20]

Calc. Var. Part. Diff. Eqs., 33 (2008), 1-35. doi: 10.1007/s00526-007-0146-1.  Google Scholar

[21]

Calculus of Variations and Partial Differential Equations, 47 (2013), 809-823. doi: 10.1007/s00526-012-0536-x.  Google Scholar

[22]

Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985. doi: 10.1007/s00526-013-0607-7.  Google Scholar

[23]

Comm. Pure Appl. Anal., 13 (2014), 1045-1060. doi: 10.3934/cpaa.2014.13.1045.  Google Scholar

[24]

Trans. Amer. Math. Soc., 363 (2011), 4285-4307. doi: 10.1090/S0002-9947-2011-05356-0.  Google Scholar

[25]

Indiana Univ. Math. Journal, 32 (1983), 25-37. doi: 10.1512/iumj.1983.32.32003.  Google Scholar

[26]

Ind. Univ. Math. J., 57 (2008), 781-836. doi: 10.1512/iumj.2008.57.3089.  Google Scholar

[27]

SIAM J. Appl. Math., 49 (1989), 116-133. doi: 10.1137/0149007.  Google Scholar

[28]

SIAM J. Appl. Math., 49 (1989), 1722-1733. doi: 10.1137/0149104.  Google Scholar

[29]

Ann. of Math., 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41.  Google Scholar

[30]

Journal de Mathématiques Pures et Appliquées, 101 (2014), 1-26. doi: 10.1016/j.matpur.2013.05.001.  Google Scholar

[31]

SIAM J. Math. Anal., 43 (2011), 2675-2687. doi: 10.1137/110831040.  Google Scholar

[32]

Interfaces And Free Boundaries, 14 (2012), 153-165. doi: 10.4171/IFB/277.  Google Scholar

[33]

P. Smyrnelis, Personal, communication., ().   Google Scholar

[34]

Rocky Mountain J. Math., 21 (1991), 799-807. doi: 10.1216/rmjm/1181072968.  Google Scholar

[35]

Ann. Math., 103 (1976), 489-539. doi: 10.2307/1970949.  Google Scholar

[36]

J. Reine Angew. Math., 574 (2004), 147-185. doi: 10.1515/crll.2004.068.  Google Scholar

[37]

Notes by O. Chodash., Stanford, 2012. Google Scholar

show all references

References:
[1]

Calc. Var. Part. Diff. Eqs., 5 (1997), 359-390. doi: 10.1007/s005260050071.  Google Scholar

[2]

Proc. Amer. Math. Soc., 139 (2011), 153-162. doi: 10.1090/S0002-9939-2010-10453-7.  Google Scholar

[3]

In Geometric Partial Differential Equations (eds. M. Novaga and G. Orlandi), Publications Scuola Normale Superiore, CRM Series, 15, Birkhäuser, 2013, 1-31. doi: 10.1007/978-88-7642-473-1_1.  Google Scholar

[4]

Comm. Partial Diff. Eqs, 37 (2012), 2093-2115. doi: 10.1080/03605302.2012.721851.  Google Scholar

[5]

Arch. Rat. Mech. Analysis, 202 (2011), 567-597. doi: 10.1007/s00205-011-0441-z.  Google Scholar

[6]

N. D. Alikakos and G. Fusco, In, preparation., ().   Google Scholar

[7]

Indiana Univ. Math. Journal, 57 (2008), 1871-1906. doi: 10.1512/iumj.2008.57.3181.  Google Scholar

[8]

Ann. Scuola Norm Sup. Pisa Cl. Sci., 9 (2009), 1-26.  Google Scholar

[9]

N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves,, to appear in JEMS, ().   Google Scholar

[10]

Ann. Inst. Henri Poincare, 7 (1990), 67-90.  Google Scholar

[11]

Birkhäuser, 1994. doi: 10.1007/978-1-4612-0287-5.  Google Scholar

[12]

Arch. Rat. Mech. Analysis, 124 (1993), 355-379. doi: 10.1007/BF00375607.  Google Scholar

[13]

Comm. Pure. Appl. Math., 49 (1996), 677-715. doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6.  Google Scholar

[14]

Comm. Pure Appl. Math., 48 (1995), 1-12. doi: 10.1002/cpa.3160480101.  Google Scholar

[15]

Journal Amer. Math. Society , 21 (2008), 847-862. doi: 10.1090/S0894-0347-08-00593-6.  Google Scholar

[16]

Archive for Rational Mechanics and Analysis, 216 (2015), 153-191. doi: 10.1007/s00205-014-0804-3.  Google Scholar

[17]

Graduate Studies in Mathematics, AMS, 1998. doi: 10.1090/gsm/019.  Google Scholar

[18]

Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.  Google Scholar

[19]

J. Funct. Anal., 214 (2004), 386-395. doi: 10.1016/j.jfa.2003.07.012.  Google Scholar

[20]

Calc. Var. Part. Diff. Eqs., 33 (2008), 1-35. doi: 10.1007/s00526-007-0146-1.  Google Scholar

[21]

Calculus of Variations and Partial Differential Equations, 47 (2013), 809-823. doi: 10.1007/s00526-012-0536-x.  Google Scholar

[22]

Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985. doi: 10.1007/s00526-013-0607-7.  Google Scholar

[23]

Comm. Pure Appl. Anal., 13 (2014), 1045-1060. doi: 10.3934/cpaa.2014.13.1045.  Google Scholar

[24]

Trans. Amer. Math. Soc., 363 (2011), 4285-4307. doi: 10.1090/S0002-9947-2011-05356-0.  Google Scholar

[25]

Indiana Univ. Math. Journal, 32 (1983), 25-37. doi: 10.1512/iumj.1983.32.32003.  Google Scholar

[26]

Ind. Univ. Math. J., 57 (2008), 781-836. doi: 10.1512/iumj.2008.57.3089.  Google Scholar

[27]

SIAM J. Appl. Math., 49 (1989), 116-133. doi: 10.1137/0149007.  Google Scholar

[28]

SIAM J. Appl. Math., 49 (1989), 1722-1733. doi: 10.1137/0149104.  Google Scholar

[29]

Ann. of Math., 169 (2009), 41-78. doi: 10.4007/annals.2009.169.41.  Google Scholar

[30]

Journal de Mathématiques Pures et Appliquées, 101 (2014), 1-26. doi: 10.1016/j.matpur.2013.05.001.  Google Scholar

[31]

SIAM J. Math. Anal., 43 (2011), 2675-2687. doi: 10.1137/110831040.  Google Scholar

[32]

Interfaces And Free Boundaries, 14 (2012), 153-165. doi: 10.4171/IFB/277.  Google Scholar

[33]

P. Smyrnelis, Personal, communication., ().   Google Scholar

[34]

Rocky Mountain J. Math., 21 (1991), 799-807. doi: 10.1216/rmjm/1181072968.  Google Scholar

[35]

Ann. Math., 103 (1976), 489-539. doi: 10.2307/1970949.  Google Scholar

[36]

J. Reine Angew. Math., 574 (2004), 147-185. doi: 10.1515/crll.2004.068.  Google Scholar

[37]

Notes by O. Chodash., Stanford, 2012. Google Scholar

[1]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[2]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[3]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[4]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[5]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[6]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[7]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[8]

Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021063

[9]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[10]

Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032

[11]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[12]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[13]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[14]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[15]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

[16]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[17]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[18]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[20]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]