Citation: |
[1] |
S. Alama, L. Bronsard and C. Gui, Stationary solutions in $\mathbbR^2$ for an Allen-Cahn system with multiple well potential, Calc. Var. Part. Diff. Eqs., 5 (1997), 359-390.doi: 10.1007/s005260050071. |
[2] |
N. D. Alikakos, Some basic facts on the system $\Delta u-W_u(u)=0$, Proc. Amer. Math. Soc., 139 (2011), 153-162.doi: 10.1090/S0002-9939-2010-10453-7. |
[3] |
N. D. Alikakos, On the structure of phase transition maps for three or more coexisting phases, In Geometric Partial Differential Equations (eds. M. Novaga and G. Orlandi), Publications Scuola Normale Superiore, CRM Series, 15, Birkhäuser, 2013, 1-31.doi: 10.1007/978-88-7642-473-1_1. |
[4] |
N. D. Alikakos, A new proof for the existence of an equivariant entire solution connecting the minima of the potential for the system $\Delta u-W_u(u)=0$, Comm. Partial Diff. Eqs, 37 (2012), 2093-2115.doi: 10.1080/03605302.2012.721851. |
[5] |
N. D. Alikakos and G. Fusco, Entire solutions to equivariant elliptic systems with variational structure, Arch. Rat. Mech. Analysis, 202 (2011), 567-597.doi: 10.1007/s00205-011-0441-z. |
[6] |
N. D. Alikakos and G. Fusco, In preparation. |
[7] |
N. D. Alikakos and G. Fusco, On the connection problem for potentials with several global minima, Indiana Univ. Math. Journal, 57 (2008), 1871-1906.doi: 10.1512/iumj.2008.57.3181. |
[8] |
N. D. Alikakos and G. Fusco, Asymptotic and rigidity results for symmetric solutions of the elliptic system $\Delta u=W_u(u)$, Ann. Scuola Norm Sup. Pisa Cl. Sci., 9 (2009), 1-26. |
[9] |
N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves, to appear in JEMS, arXiv:1311.1022. |
[10] |
S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids, Ann. Inst. Henri Poincare, 7 (1990), 67-90. |
[11] |
F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vortices, Birkhäuser, 1994.doi: 10.1007/978-1-4612-0287-5. |
[12] |
L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rat. Mech. Analysis, 124 (1993), 355-379.doi: 10.1007/BF00375607. |
[13] |
L. Bronsard, C. Gui and M. Schatzman, A three-layered minimizer in $\mathbbR^2$ for a variational problem with a symmetric three-well potential, Comm. Pure. Appl. Math., 49 (1996), 677-715.doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6. |
[14] |
L. Caffarelli and A. Cordoba, Uniform convergence of a singular perturbation problem, Comm. Pure Appl. Math., 48 (1995), 1-12.doi: 10.1002/cpa.3160480101. |
[15] |
L. Caffarelli and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, Journal Amer. Math. Society , 21 (2008), 847-862.doi: 10.1090/S0894-0347-08-00593-6. |
[16] |
A. Cesaroni, C. M. Muratov and M. Novaga, Front propagation and phase field models of stratified media, Archive for Rational Mechanics and Analysis, 216 (2015), 153-191.doi: 10.1007/s00205-014-0804-3. |
[17] |
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, AMS, 1998.doi: 10.1090/gsm/019. |
[18] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[19] |
A. Farina, Two results on entire solutions of Ginzburg-Landau systems in higher dimensions, J. Funct. Anal., 214 (2004), 386-395.doi: 10.1016/j.jfa.2003.07.012. |
[20] |
A. Farina and E. Valdinoci, Geometry of quasiminimal phase transitions, Calc. Var. Part. Diff. Eqs., 33 (2008), 1-35.doi: 10.1007/s00526-007-0146-1. |
[21] |
M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems, Calculus of Variations and Partial Differential Equations, 47 (2013), 809-823.doi: 10.1007/s00526-012-0536-x. |
[22] |
G. Fusco, Equivariant entire solutions to the elliptic system $\Delta u=W_u(u)$ for general $G-$invariant potentials, Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985.doi: 10.1007/s00526-013-0607-7. |
[23] |
G. Fusco, On some elementary properties of vector minimizers of the Allen-Cahn energy, Comm. Pure Appl. Anal., 13 (2014), 1045-1060.doi: 10.3934/cpaa.2014.13.1045. |
[24] |
G. Fusco, F. Leonetti and C. Pignotti, A uniform estimate for positive solutions of semilinear elliptic equations, Trans. Amer. Math. Soc., 363 (2011), 4285-4307.doi: 10.1090/S0002-9947-2011-05356-0. |
[25] |
E. Gonzalez, U. Massari and I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. Journal, 32 (1983), 25-37.doi: 10.1512/iumj.1983.32.32003. |
[26] |
C. Gui and M. Schatzman, Symmetric quadruple phase transitions, Ind. Univ. Math. J., 57 (2008), 781-836.doi: 10.1512/iumj.2008.57.3089. |
[27] |
J. Rubinstein, P. Sternberg and J. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math., 49 (1989), 116-133.doi: 10.1137/0149007. |
[28] |
J. Rubinstein, P. Sternberg and J. Keller, Reaction-Diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math., 49 (1989), 1722-1733.doi: 10.1137/0149104. |
[29] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.doi: 10.4007/annals.2009.169.41. |
[30] |
O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm, Journal de Mathématiques Pures et Appliquées, 101 (2014), 1-26.doi: 10.1016/j.matpur.2013.05.001. |
[31] |
O. Savin and E. Valdinoci, Density estimates for a nonolocal variational model via the Sobolev inequality, SIAM J. Math. Anal., 43 (2011), 2675-2687.doi: 10.1137/110831040. |
[32] |
Y. Sire and E. Valdinoci, Density estimates for phase transitions with a trace, Interfaces And Free Boundaries, 14 (2012), 153-165.doi: 10.4171/IFB/277. |
[33] |
P. Smyrnelis, Personal communication. |
[34] |
P. Sternberg, Vector-valued local minimizers of nonconvex variational problems, Rocky Mountain J. Math., 21 (1991), 799-807.doi: 10.1216/rmjm/1181072968. |
[35] |
J. E. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math., 103 (1976), 489-539.doi: 10.2307/1970949. |
[36] |
E. Valdinoci, Plane-like minimizers in periodic media: Jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 574 (2004), 147-185.doi: 10.1515/crll.2004.068. |
[37] |
B. White, Topics in GMT, Notes by O. Chodash., Stanford, 2012. |