-
Previous Article
Variational parabolic capacity
- DCDS Home
- This Issue
-
Next Article
Harmonic functions in union of chambers
Density estimates for vector minimizers and applications
1. | Department of Mathematics, University of Athens, Panepistemiopolis, 15784 Athens, Greece |
2. | Università degli Studi dell'Aquila, Via Vetoio, 67010 Coppito, L'Aquila, Italy |
References:
[1] |
Calc. Var. Part. Diff. Eqs., 5 (1997), 359-390.
doi: 10.1007/s005260050071. |
[2] |
Proc. Amer. Math. Soc., 139 (2011), 153-162.
doi: 10.1090/S0002-9939-2010-10453-7. |
[3] |
In Geometric Partial Differential Equations (eds. M. Novaga and G. Orlandi), Publications Scuola Normale Superiore, CRM Series, 15, Birkhäuser, 2013, 1-31.
doi: 10.1007/978-88-7642-473-1_1. |
[4] |
Comm. Partial Diff. Eqs, 37 (2012), 2093-2115.
doi: 10.1080/03605302.2012.721851. |
[5] |
Arch. Rat. Mech. Analysis, 202 (2011), 567-597.
doi: 10.1007/s00205-011-0441-z. |
[6] |
N. D. Alikakos and G. Fusco, In, preparation., (). Google Scholar |
[7] |
Indiana Univ. Math. Journal, 57 (2008), 1871-1906.
doi: 10.1512/iumj.2008.57.3181. |
[8] |
Ann. Scuola Norm Sup. Pisa Cl. Sci., 9 (2009), 1-26. |
[9] |
N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves,, to appear in JEMS, (). Google Scholar |
[10] |
Ann. Inst. Henri Poincare, 7 (1990), 67-90. |
[11] |
Birkhäuser, 1994.
doi: 10.1007/978-1-4612-0287-5. |
[12] |
Arch. Rat. Mech. Analysis, 124 (1993), 355-379.
doi: 10.1007/BF00375607. |
[13] |
Comm. Pure. Appl. Math., 49 (1996), 677-715.
doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6. |
[14] |
Comm. Pure Appl. Math., 48 (1995), 1-12.
doi: 10.1002/cpa.3160480101. |
[15] |
Journal Amer. Math. Society , 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[16] |
Archive for Rational Mechanics and Analysis, 216 (2015), 153-191.
doi: 10.1007/s00205-014-0804-3. |
[17] |
Graduate Studies in Mathematics, AMS, 1998.
doi: 10.1090/gsm/019. |
[18] |
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[19] |
J. Funct. Anal., 214 (2004), 386-395.
doi: 10.1016/j.jfa.2003.07.012. |
[20] |
Calc. Var. Part. Diff. Eqs., 33 (2008), 1-35.
doi: 10.1007/s00526-007-0146-1. |
[21] |
Calculus of Variations and Partial Differential Equations, 47 (2013), 809-823.
doi: 10.1007/s00526-012-0536-x. |
[22] |
Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985.
doi: 10.1007/s00526-013-0607-7. |
[23] |
Comm. Pure Appl. Anal., 13 (2014), 1045-1060.
doi: 10.3934/cpaa.2014.13.1045. |
[24] |
Trans. Amer. Math. Soc., 363 (2011), 4285-4307.
doi: 10.1090/S0002-9947-2011-05356-0. |
[25] |
Indiana Univ. Math. Journal, 32 (1983), 25-37.
doi: 10.1512/iumj.1983.32.32003. |
[26] |
Ind. Univ. Math. J., 57 (2008), 781-836.
doi: 10.1512/iumj.2008.57.3089. |
[27] |
SIAM J. Appl. Math., 49 (1989), 116-133.
doi: 10.1137/0149007. |
[28] |
SIAM J. Appl. Math., 49 (1989), 1722-1733.
doi: 10.1137/0149104. |
[29] |
Ann. of Math., 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41. |
[30] |
Journal de Mathématiques Pures et Appliquées, 101 (2014), 1-26.
doi: 10.1016/j.matpur.2013.05.001. |
[31] |
SIAM J. Math. Anal., 43 (2011), 2675-2687.
doi: 10.1137/110831040. |
[32] |
Interfaces And Free Boundaries, 14 (2012), 153-165.
doi: 10.4171/IFB/277. |
[33] |
P. Smyrnelis, Personal, communication., (). Google Scholar |
[34] |
Rocky Mountain J. Math., 21 (1991), 799-807.
doi: 10.1216/rmjm/1181072968. |
[35] |
Ann. Math., 103 (1976), 489-539.
doi: 10.2307/1970949. |
[36] |
J. Reine Angew. Math., 574 (2004), 147-185.
doi: 10.1515/crll.2004.068. |
[37] |
Notes by O. Chodash., Stanford, 2012. Google Scholar |
show all references
References:
[1] |
Calc. Var. Part. Diff. Eqs., 5 (1997), 359-390.
doi: 10.1007/s005260050071. |
[2] |
Proc. Amer. Math. Soc., 139 (2011), 153-162.
doi: 10.1090/S0002-9939-2010-10453-7. |
[3] |
In Geometric Partial Differential Equations (eds. M. Novaga and G. Orlandi), Publications Scuola Normale Superiore, CRM Series, 15, Birkhäuser, 2013, 1-31.
doi: 10.1007/978-88-7642-473-1_1. |
[4] |
Comm. Partial Diff. Eqs, 37 (2012), 2093-2115.
doi: 10.1080/03605302.2012.721851. |
[5] |
Arch. Rat. Mech. Analysis, 202 (2011), 567-597.
doi: 10.1007/s00205-011-0441-z. |
[6] |
N. D. Alikakos and G. Fusco, In, preparation., (). Google Scholar |
[7] |
Indiana Univ. Math. Journal, 57 (2008), 1871-1906.
doi: 10.1512/iumj.2008.57.3181. |
[8] |
Ann. Scuola Norm Sup. Pisa Cl. Sci., 9 (2009), 1-26. |
[9] |
N. D. Alikakos and G. Fusco, A maximum principle for systems with variational structure and an application to standing waves,, to appear in JEMS, (). Google Scholar |
[10] |
Ann. Inst. Henri Poincare, 7 (1990), 67-90. |
[11] |
Birkhäuser, 1994.
doi: 10.1007/978-1-4612-0287-5. |
[12] |
Arch. Rat. Mech. Analysis, 124 (1993), 355-379.
doi: 10.1007/BF00375607. |
[13] |
Comm. Pure. Appl. Math., 49 (1996), 677-715.
doi: 10.1002/(SICI)1097-0312(199607)49:7<677::AID-CPA2>3.0.CO;2-6. |
[14] |
Comm. Pure Appl. Math., 48 (1995), 1-12.
doi: 10.1002/cpa.3160480101. |
[15] |
Journal Amer. Math. Society , 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[16] |
Archive for Rational Mechanics and Analysis, 216 (2015), 153-191.
doi: 10.1007/s00205-014-0804-3. |
[17] |
Graduate Studies in Mathematics, AMS, 1998.
doi: 10.1090/gsm/019. |
[18] |
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. |
[19] |
J. Funct. Anal., 214 (2004), 386-395.
doi: 10.1016/j.jfa.2003.07.012. |
[20] |
Calc. Var. Part. Diff. Eqs., 33 (2008), 1-35.
doi: 10.1007/s00526-007-0146-1. |
[21] |
Calculus of Variations and Partial Differential Equations, 47 (2013), 809-823.
doi: 10.1007/s00526-012-0536-x. |
[22] |
Calc. Var. Part. Diff. Eqs., 49 (2014), 963-985.
doi: 10.1007/s00526-013-0607-7. |
[23] |
Comm. Pure Appl. Anal., 13 (2014), 1045-1060.
doi: 10.3934/cpaa.2014.13.1045. |
[24] |
Trans. Amer. Math. Soc., 363 (2011), 4285-4307.
doi: 10.1090/S0002-9947-2011-05356-0. |
[25] |
Indiana Univ. Math. Journal, 32 (1983), 25-37.
doi: 10.1512/iumj.1983.32.32003. |
[26] |
Ind. Univ. Math. J., 57 (2008), 781-836.
doi: 10.1512/iumj.2008.57.3089. |
[27] |
SIAM J. Appl. Math., 49 (1989), 116-133.
doi: 10.1137/0149007. |
[28] |
SIAM J. Appl. Math., 49 (1989), 1722-1733.
doi: 10.1137/0149104. |
[29] |
Ann. of Math., 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41. |
[30] |
Journal de Mathématiques Pures et Appliquées, 101 (2014), 1-26.
doi: 10.1016/j.matpur.2013.05.001. |
[31] |
SIAM J. Math. Anal., 43 (2011), 2675-2687.
doi: 10.1137/110831040. |
[32] |
Interfaces And Free Boundaries, 14 (2012), 153-165.
doi: 10.4171/IFB/277. |
[33] |
P. Smyrnelis, Personal, communication., (). Google Scholar |
[34] |
Rocky Mountain J. Math., 21 (1991), 799-807.
doi: 10.1216/rmjm/1181072968. |
[35] |
Ann. Math., 103 (1976), 489-539.
doi: 10.2307/1970949. |
[36] |
J. Reine Angew. Math., 574 (2004), 147-185.
doi: 10.1515/crll.2004.068. |
[37] |
Notes by O. Chodash., Stanford, 2012. Google Scholar |
[1] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[2] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[3] |
Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220 |
[4] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[5] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[6] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[7] |
Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020 |
[8] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021063 |
[9] |
Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021034 |
[10] |
Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032 |
[11] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[12] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[13] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[14] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[15] |
Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047 |
[16] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[17] |
Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027 |
[18] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
[19] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[20] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]