December  2015, 35(12): 5665-5688. doi: 10.3934/dcds.2015.35.5665

Variational parabolic capacity

1. 

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland

2. 

Department of Mathematics and Systems Analysis, Aalto University School of Science, FI-00076 Aalto, Finland

3. 

Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyväskylä

Received  April 2014 Published  May 2015

We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.
Citation: Benny Avelin, Tuomo Kuusi, Mikko Parviainen. Variational parabolic capacity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5665-5688. doi: 10.3934/dcds.2015.35.5665
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften 314, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311.  doi: 10.1007/BF01176474.  Google Scholar

[3]

A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations,, Calc. Var. Partial Differential Equations, 52 (2015), 797.  doi: 10.1007/s00526-014-0734-9.  Google Scholar

[4]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[5]

V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles,, J. Reine Angew. Math., 650 (2011), 107.  doi: 10.1515/CRELLE.2011.006.  Google Scholar

[6]

J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations,, Potential Anal., 19 (2003), 99.  doi: 10.1023/A:1023248531928.  Google Scholar

[7]

L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation,, Arch. Rational Mech. Anal., 78 (1982), 293.  doi: 10.1007/BF00249583.  Google Scholar

[8]

R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations,, J. London Math. Soc., 21 (1980), 311.  doi: 10.1112/jlms/s2-21.2.311.  Google Scholar

[9]

R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity,, J. Differential Equations, 45 (1982), 374.  doi: 10.1016/0022-0396(82)90034-1.  Google Scholar

[10]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Unabridged republication of the 1993 original, (1993).   Google Scholar

[11]

T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, SIAM J. Math. Anal., 27 (1996), 661.  doi: 10.1137/0527036.  Google Scholar

[12]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions,, Math. Ann., 355 (2013), 1349.  doi: 10.1007/s00208-012-0825-x.  Google Scholar

[14]

K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[15]

J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions,, J. Funct. Anal., 258 (2010), 713.  doi: 10.1016/j.jfa.2009.08.009.  Google Scholar

[16]

J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory,, J. Fixed Point Theory Appl., 13 (2013), 291.  doi: 10.1007/s11784-013-0108-5.  Google Scholar

[17]

R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions,, J. Evol. Equ., 10 (2010), 1.  doi: 10.1007/s00028-009-0037-3.  Google Scholar

[18]

R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations,, J. Differential Equations, 246 (2009), 3668.  doi: 10.1016/j.jde.2009.02.006.  Google Scholar

[19]

T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation,, Differential Integral Equations, 22 (2009), 1211.   Google Scholar

[20]

E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore,, Ann. Mat. Pura Appl., 97 (1973), 83.  doi: 10.1007/BF02414910.  Google Scholar

[21]

E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui,, Ann. Mat. Pura Appl., 106 (1975), 11.  doi: 10.1007/BF02415021.  Google Scholar

[22]

N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[23]

P. Lindqvist and M. Parviainen, Irregular time dependent obstacles,, J. Funct. Anal., 263 (2012), 2458.  doi: 10.1016/j.jfa.2012.07.014.  Google Scholar

[24]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition,, Grund. der Math. Wiss., (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[25]

M. Pierre, Parabolic capacity and Sobolev spaces,, SIAM J. Math. Anal., 14 (1983), 522.  doi: 10.1137/0514044.  Google Scholar

[26]

L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations,, Proc. London Math. Soc., 48 (1984), 385.  doi: 10.1112/plms/s3-48.3.385.  Google Scholar

[27]

L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations,, Ann. Mat. Pura Appl., 141 (1985), 187.  doi: 10.1007/BF01763174.  Google Scholar

[28]

T. Ransford, Potential Theory in the Complex Plane,, London Mathematical Society Student Texts, (1995).  doi: 10.1017/CBO9780511623776.  Google Scholar

[29]

N. A. Watson, Thermal capacity,, Proc. London Math. Soc., 37 (1978), 342.  doi: 10.1112/plms/s3-37.2.342.  Google Scholar

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften 314, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311.  doi: 10.1007/BF01176474.  Google Scholar

[3]

A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations,, Calc. Var. Partial Differential Equations, 52 (2015), 797.  doi: 10.1007/s00526-014-0734-9.  Google Scholar

[4]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[5]

V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles,, J. Reine Angew. Math., 650 (2011), 107.  doi: 10.1515/CRELLE.2011.006.  Google Scholar

[6]

J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations,, Potential Anal., 19 (2003), 99.  doi: 10.1023/A:1023248531928.  Google Scholar

[7]

L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation,, Arch. Rational Mech. Anal., 78 (1982), 293.  doi: 10.1007/BF00249583.  Google Scholar

[8]

R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations,, J. London Math. Soc., 21 (1980), 311.  doi: 10.1112/jlms/s2-21.2.311.  Google Scholar

[9]

R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity,, J. Differential Equations, 45 (1982), 374.  doi: 10.1016/0022-0396(82)90034-1.  Google Scholar

[10]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Unabridged republication of the 1993 original, (1993).   Google Scholar

[11]

T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, SIAM J. Math. Anal., 27 (1996), 661.  doi: 10.1137/0527036.  Google Scholar

[12]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions,, Math. Ann., 355 (2013), 1349.  doi: 10.1007/s00208-012-0825-x.  Google Scholar

[14]

K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[15]

J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions,, J. Funct. Anal., 258 (2010), 713.  doi: 10.1016/j.jfa.2009.08.009.  Google Scholar

[16]

J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory,, J. Fixed Point Theory Appl., 13 (2013), 291.  doi: 10.1007/s11784-013-0108-5.  Google Scholar

[17]

R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions,, J. Evol. Equ., 10 (2010), 1.  doi: 10.1007/s00028-009-0037-3.  Google Scholar

[18]

R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations,, J. Differential Equations, 246 (2009), 3668.  doi: 10.1016/j.jde.2009.02.006.  Google Scholar

[19]

T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation,, Differential Integral Equations, 22 (2009), 1211.   Google Scholar

[20]

E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore,, Ann. Mat. Pura Appl., 97 (1973), 83.  doi: 10.1007/BF02414910.  Google Scholar

[21]

E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui,, Ann. Mat. Pura Appl., 106 (1975), 11.  doi: 10.1007/BF02415021.  Google Scholar

[22]

N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[23]

P. Lindqvist and M. Parviainen, Irregular time dependent obstacles,, J. Funct. Anal., 263 (2012), 2458.  doi: 10.1016/j.jfa.2012.07.014.  Google Scholar

[24]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition,, Grund. der Math. Wiss., (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[25]

M. Pierre, Parabolic capacity and Sobolev spaces,, SIAM J. Math. Anal., 14 (1983), 522.  doi: 10.1137/0514044.  Google Scholar

[26]

L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations,, Proc. London Math. Soc., 48 (1984), 385.  doi: 10.1112/plms/s3-48.3.385.  Google Scholar

[27]

L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations,, Ann. Mat. Pura Appl., 141 (1985), 187.  doi: 10.1007/BF01763174.  Google Scholar

[28]

T. Ransford, Potential Theory in the Complex Plane,, London Mathematical Society Student Texts, (1995).  doi: 10.1017/CBO9780511623776.  Google Scholar

[29]

N. A. Watson, Thermal capacity,, Proc. London Math. Soc., 37 (1978), 342.  doi: 10.1112/plms/s3-37.2.342.  Google Scholar

[1]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[2]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[3]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[4]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[8]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[9]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[10]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[11]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[14]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[15]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[16]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[17]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[18]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[19]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[20]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]