Advanced Search
Article Contents
Article Contents

Variational parabolic capacity

Abstract Related Papers Cited by
  • We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.
    Mathematics Subject Classification: Primary: 35K55; Secondary: 31C45.


    \begin{equation} \\ \end{equation}
  • [1]

    D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996.doi: 10.1007/978-3-662-03282-4.


    H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.doi: 10.1007/BF01176474.


    A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations, Calc. Var. Partial Differential Equations, 52 (2015), 797-827.doi: 10.1007/s00526-014-0734-9.


    L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.doi: 10.1006/jfan.1996.3040.


    V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles, J. Reine Angew. Math., 650 (2011), 107-160.doi: 10.1515/CRELLE.2011.006.


    J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations, Potential Anal., 19 (2003), 99-161.doi: 10.1023/A:1023248531928.


    L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation, Arch. Rational Mech. Anal., 78 (1982), 293-314.doi: 10.1007/BF00249583.


    R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations, J. London Math. Soc., 21 (1980), 311-318.doi: 10.1112/jlms/s2-21.2.311.


    R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity, J. Differential Equations, 45 (1982), 374-388.doi: 10.1016/0022-0396(82)90034-1.


    J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original, Dover Publications, Inc., Mineola, NY, 2006.


    T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal., 27 (1996), 661-683.doi: 10.1137/0527036.


    T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793.


    J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions, Math. Ann., 355 (2013), 1349-1381.doi: 10.1007/s00208-012-0825-x.


    K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185 (2006), 411-435.doi: 10.1007/s10231-005-0160-x.


    J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions, J. Funct. Anal., 258 (2010), 713-728.doi: 10.1016/j.jfa.2009.08.009.


    J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory, J. Fixed Point Theory Appl., 13 (2013), 291-307.doi: 10.1007/s11784-013-0108-5.


    R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions, J. Evol. Equ., 10 (2010), 1-20.doi: 10.1007/s00028-009-0037-3.


    R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations, J. Differential Equations, 246 (2009), 3668-3680.doi: 10.1016/j.jde.2009.02.006.


    T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation, Differential Integral Equations, 22 (2009), 1211-1222.


    E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore, Ann. Mat. Pura Appl., 97 (1973), 83-114.doi: 10.1007/BF02414910.


    E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui, Ann. Mat. Pura Appl., 106 (1975), 11-38.doi: 10.1007/BF02415021.


    N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.


    P. Lindqvist and M. Parviainen, Irregular time dependent obstacles, J. Funct. Anal., 263 (2012), 2458-2482.doi: 10.1016/j.jfa.2012.07.014.


    V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition, Grund. der Math. Wiss., 342, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-15564-2.


    M. Pierre, Parabolic capacity and Sobolev spaces, SIAM J. Math. Anal., 14 (1983), 522-533.doi: 10.1137/0514044.


    L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations, Proc. London Math. Soc., 48 (1984), 385-400.doi: 10.1112/plms/s3-48.3.385.


    L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations, Ann. Mat. Pura Appl., 141 (1985), 187-221.doi: 10.1007/BF01763174.


    T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511623776.


    N. A. Watson, Thermal capacity, Proc. London Math. Soc., 37 (1978), 342-362.doi: 10.1112/plms/s3-37.2.342.

  • 加载中

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint