-
Previous Article
On the classical limit of the Schrödinger equation
- DCDS Home
- This Issue
-
Next Article
Density estimates for vector minimizers and applications
Variational parabolic capacity
1. | Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland |
2. | Department of Mathematics and Systems Analysis, Aalto University School of Science, FI-00076 Aalto, Finland |
3. | Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyväskylä |
References:
[1] |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften 314, (1996).
doi: 10.1007/978-3-662-03282-4. |
[2] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311.
doi: 10.1007/BF01176474. |
[3] |
A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations,, Calc. Var. Partial Differential Equations, 52 (2015), 797.
doi: 10.1007/s00526-014-0734-9. |
[4] |
L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.
doi: 10.1006/jfan.1996.3040. |
[5] |
V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles,, J. Reine Angew. Math., 650 (2011), 107.
doi: 10.1515/CRELLE.2011.006. |
[6] |
J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations,, Potential Anal., 19 (2003), 99.
doi: 10.1023/A:1023248531928. |
[7] |
L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation,, Arch. Rational Mech. Anal., 78 (1982), 293.
doi: 10.1007/BF00249583. |
[8] |
R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations,, J. London Math. Soc., 21 (1980), 311.
doi: 10.1112/jlms/s2-21.2.311. |
[9] |
R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity,, J. Differential Equations, 45 (1982), 374.
doi: 10.1016/0022-0396(82)90034-1. |
[10] |
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Unabridged republication of the 1993 original, (1993).
|
[11] |
T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, SIAM J. Math. Anal., 27 (1996), 661.
doi: 10.1137/0527036. |
[12] |
T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.
doi: 10.1007/BF02392793. |
[13] |
J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions,, Math. Ann., 355 (2013), 1349.
doi: 10.1007/s00208-012-0825-x. |
[14] |
K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.
doi: 10.1007/s10231-005-0160-x. |
[15] |
J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions,, J. Funct. Anal., 258 (2010), 713.
doi: 10.1016/j.jfa.2009.08.009. |
[16] |
J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory,, J. Fixed Point Theory Appl., 13 (2013), 291.
doi: 10.1007/s11784-013-0108-5. |
[17] |
R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions,, J. Evol. Equ., 10 (2010), 1.
doi: 10.1007/s00028-009-0037-3. |
[18] |
R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations,, J. Differential Equations, 246 (2009), 3668.
doi: 10.1016/j.jde.2009.02.006. |
[19] |
T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation,, Differential Integral Equations, 22 (2009), 1211.
|
[20] |
E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore,, Ann. Mat. Pura Appl., 97 (1973), 83.
doi: 10.1007/BF02414910. |
[21] |
E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui,, Ann. Mat. Pura Appl., 106 (1975), 11.
doi: 10.1007/BF02415021. |
[22] |
N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).
|
[23] |
P. Lindqvist and M. Parviainen, Irregular time dependent obstacles,, J. Funct. Anal., 263 (2012), 2458.
doi: 10.1016/j.jfa.2012.07.014. |
[24] |
V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition,, Grund. der Math. Wiss., (2011).
doi: 10.1007/978-3-642-15564-2. |
[25] |
M. Pierre, Parabolic capacity and Sobolev spaces,, SIAM J. Math. Anal., 14 (1983), 522.
doi: 10.1137/0514044. |
[26] |
L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations,, Proc. London Math. Soc., 48 (1984), 385.
doi: 10.1112/plms/s3-48.3.385. |
[27] |
L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations,, Ann. Mat. Pura Appl., 141 (1985), 187.
doi: 10.1007/BF01763174. |
[28] |
T. Ransford, Potential Theory in the Complex Plane,, London Mathematical Society Student Texts, (1995).
doi: 10.1017/CBO9780511623776. |
[29] |
N. A. Watson, Thermal capacity,, Proc. London Math. Soc., 37 (1978), 342.
doi: 10.1112/plms/s3-37.2.342. |
show all references
References:
[1] |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften 314, (1996).
doi: 10.1007/978-3-662-03282-4. |
[2] |
H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311.
doi: 10.1007/BF01176474. |
[3] |
A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations,, Calc. Var. Partial Differential Equations, 52 (2015), 797.
doi: 10.1007/s00526-014-0734-9. |
[4] |
L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.
doi: 10.1006/jfan.1996.3040. |
[5] |
V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles,, J. Reine Angew. Math., 650 (2011), 107.
doi: 10.1515/CRELLE.2011.006. |
[6] |
J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations,, Potential Anal., 19 (2003), 99.
doi: 10.1023/A:1023248531928. |
[7] |
L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation,, Arch. Rational Mech. Anal., 78 (1982), 293.
doi: 10.1007/BF00249583. |
[8] |
R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations,, J. London Math. Soc., 21 (1980), 311.
doi: 10.1112/jlms/s2-21.2.311. |
[9] |
R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity,, J. Differential Equations, 45 (1982), 374.
doi: 10.1016/0022-0396(82)90034-1. |
[10] |
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Unabridged republication of the 1993 original, (1993).
|
[11] |
T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, SIAM J. Math. Anal., 27 (1996), 661.
doi: 10.1137/0527036. |
[12] |
T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.
doi: 10.1007/BF02392793. |
[13] |
J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions,, Math. Ann., 355 (2013), 1349.
doi: 10.1007/s00208-012-0825-x. |
[14] |
K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.
doi: 10.1007/s10231-005-0160-x. |
[15] |
J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions,, J. Funct. Anal., 258 (2010), 713.
doi: 10.1016/j.jfa.2009.08.009. |
[16] |
J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory,, J. Fixed Point Theory Appl., 13 (2013), 291.
doi: 10.1007/s11784-013-0108-5. |
[17] |
R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions,, J. Evol. Equ., 10 (2010), 1.
doi: 10.1007/s00028-009-0037-3. |
[18] |
R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations,, J. Differential Equations, 246 (2009), 3668.
doi: 10.1016/j.jde.2009.02.006. |
[19] |
T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation,, Differential Integral Equations, 22 (2009), 1211.
|
[20] |
E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore,, Ann. Mat. Pura Appl., 97 (1973), 83.
doi: 10.1007/BF02414910. |
[21] |
E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui,, Ann. Mat. Pura Appl., 106 (1975), 11.
doi: 10.1007/BF02415021. |
[22] |
N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).
|
[23] |
P. Lindqvist and M. Parviainen, Irregular time dependent obstacles,, J. Funct. Anal., 263 (2012), 2458.
doi: 10.1016/j.jfa.2012.07.014. |
[24] |
V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition,, Grund. der Math. Wiss., (2011).
doi: 10.1007/978-3-642-15564-2. |
[25] |
M. Pierre, Parabolic capacity and Sobolev spaces,, SIAM J. Math. Anal., 14 (1983), 522.
doi: 10.1137/0514044. |
[26] |
L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations,, Proc. London Math. Soc., 48 (1984), 385.
doi: 10.1112/plms/s3-48.3.385. |
[27] |
L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations,, Ann. Mat. Pura Appl., 141 (1985), 187.
doi: 10.1007/BF01763174. |
[28] |
T. Ransford, Potential Theory in the Complex Plane,, London Mathematical Society Student Texts, (1995).
doi: 10.1017/CBO9780511623776. |
[29] |
N. A. Watson, Thermal capacity,, Proc. London Math. Soc., 37 (1978), 342.
doi: 10.1112/plms/s3-37.2.342. |
[1] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[2] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[3] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[4] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[5] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[6] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[7] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282 |
[8] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[9] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[10] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[11] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[12] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[13] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[14] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[15] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[16] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[17] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297 |
[18] |
Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252 |
[19] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[20] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]