\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the classical limit of the Schrödinger equation

Abstract Related Papers Cited by
  • This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749--766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.
    Mathematics Subject Classification: Primary: 35Q41, 81Q20; Secondary: 35S30, 53D12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, $2^{nd}$ edition, McGraw Hill, New York, 1966.

    [2]

    V. I. Arnold, Characteristic class entering in quantization condition, Func. Anal. Appl., 1 (1967), 1-14.doi: 10.1007/BF01075861.

    [3]

    V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1037-5.

    [4]

    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-2063-1.

    [5]

    C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile, Archive for Rational Mechanics and Analysis, 217 (2015), 71-111.doi: 10.1007/s00205-014-0829-7.

    [6]

    P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms, Comm. on Pure and App. Math., 50 (1997), 323-379.doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

    [7]

    V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc., Providence, 1977.

    [8]

    L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1990.doi: 10.1007/978-3-642-96750-4.

    [9]

    L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, Heidelberg, 1983.doi: 10.1007/978-3-642-96750-4.

    [10]

    L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1994.doi: 10.1007/978-3-540-49938-1.

    [11]

    L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1994.doi: 10.1007/978-3-642-00136-9.

    [12]

    A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics, Review of Math. Phys., 12 (2000), 749-766.doi: 10.1142/S0129055X00000289.

    [13]

    J. Leray, Lagrangian Analysis and Quantum Mechanics, The MIT Press, Cambridge, Mass., 1981.

    [14]

    P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618.doi: 10.4171/RMI/143.

    [15]

    V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques, Dunod, Paris, 1972.

    [16]

    V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics, Reidel Publishing Company, Dordrecht, 1981.

    [17]

    J. Milnor, Morse Theory, Princeton Univ. Press, Princeton NJ, 1963.

    [18]

    D. Serre, Matrices, $2^{nd}$ edition, Springer-Verlag, New York, 2010.doi: 10.1007/978-1-4419-7683-3.

    [19]

    J.-M. Souriau, Construction explicite de l'indice de Maslov, in Group Theoretical Methods in Physics (eds. A. Janner, T. Janssen and M. Boon), Lecture Notes in Phys. 50, Springer-Verlag, 1976, 117-148.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return