December  2015, 35(12): 5689-5709. doi: 10.3934/dcds.2015.35.5689

On the classical limit of the Schrödinger equation

1. 

Université Paris-Diderot, Laboratoire J.-L. Lions, BP187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

Ecole polytechnique, CMLS, 91128 Palaiseau Cedex, France, France

3. 

King Abdullah University of Science and Technology, MCSE Division, Thuwal 23955-6900, Saudi Arabia

Received  April 2014 Published  May 2015

This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749--766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.
Citation: Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689
References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable,, $2^{nd}$ edition, (1966).   Google Scholar

[2]

V. I. Arnold, Characteristic class entering in quantization condition,, Func. Anal. Appl., 1 (1967), 1.  doi: 10.1007/BF01075861.  Google Scholar

[3]

V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-1037-5.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile,, Archive for Rational Mechanics and Analysis, 217 (2015), 71.  doi: 10.1007/s00205-014-0829-7.  Google Scholar

[6]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms,, Comm. on Pure and App. Math., 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[7]

V. Guillemin and S. Sternberg, Geometric Asymptotics,, Amer. Math. Soc., (1977).   Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,, $2^{nd}$ edition, (1990).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-540-49938-1.  Google Scholar

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-642-00136-9.  Google Scholar

[12]

A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics,, Review of Math. Phys., 12 (2000), 749.  doi: 10.1142/S0129055X00000289.  Google Scholar

[13]

J. Leray, Lagrangian Analysis and Quantum Mechanics,, The MIT Press, (1981).   Google Scholar

[14]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[15]

V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques,, Dunod, (1972).   Google Scholar

[16]

V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics,, Reidel Publishing Company, (1981).   Google Scholar

[17]

J. Milnor, Morse Theory,, Princeton Univ. Press, (1963).   Google Scholar

[18]

D. Serre, Matrices,, $2^{nd}$ edition, (2010).  doi: 10.1007/978-1-4419-7683-3.  Google Scholar

[19]

J.-M. Souriau, Construction explicite de l'indice de Maslov,, in Group Theoretical Methods in Physics (eds. A. Janner, (1976), 117.   Google Scholar

show all references

References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable,, $2^{nd}$ edition, (1966).   Google Scholar

[2]

V. I. Arnold, Characteristic class entering in quantization condition,, Func. Anal. Appl., 1 (1967), 1.  doi: 10.1007/BF01075861.  Google Scholar

[3]

V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-1037-5.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile,, Archive for Rational Mechanics and Analysis, 217 (2015), 71.  doi: 10.1007/s00205-014-0829-7.  Google Scholar

[6]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms,, Comm. on Pure and App. Math., 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[7]

V. Guillemin and S. Sternberg, Geometric Asymptotics,, Amer. Math. Soc., (1977).   Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,, $2^{nd}$ edition, (1990).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-540-49938-1.  Google Scholar

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-642-00136-9.  Google Scholar

[12]

A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics,, Review of Math. Phys., 12 (2000), 749.  doi: 10.1142/S0129055X00000289.  Google Scholar

[13]

J. Leray, Lagrangian Analysis and Quantum Mechanics,, The MIT Press, (1981).   Google Scholar

[14]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[15]

V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques,, Dunod, (1972).   Google Scholar

[16]

V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics,, Reidel Publishing Company, (1981).   Google Scholar

[17]

J. Milnor, Morse Theory,, Princeton Univ. Press, (1963).   Google Scholar

[18]

D. Serre, Matrices,, $2^{nd}$ edition, (2010).  doi: 10.1007/978-1-4419-7683-3.  Google Scholar

[19]

J.-M. Souriau, Construction explicite de l'indice de Maslov,, in Group Theoretical Methods in Physics (eds. A. Janner, (1976), 117.   Google Scholar

[1]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[7]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[15]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[16]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[18]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (2)

[Back to Top]