December  2015, 35(12): 5711-5723. doi: 10.3934/dcds.2015.35.5711

Eventual regularity for the parabolic minimal surface equation

1. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

2. 

Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa

3. 

Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy

Received  January 2014 Published  May 2015

We show that the parabolic minimal surface equation has an eventual regularization effect, that is, the solution becomes smooth after a strictly positive finite time.
Citation: Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711
References:
[1]

L. Ambrosio, Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime,, Edizioni della Scuola Normale, (1997).   Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[3]

F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516.  doi: 10.1006/jfan.2001.3829.  Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,, Oxford Mathematical Monographs, (2004).  doi: 10.1007/978-3-0348-7928-6.  Google Scholar

[5]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. Mat. Pura Appl., 135 (1983), 293.  doi: 10.1007/BF01781073.  Google Scholar

[6]

G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations,, Edizioni della Scuola Normale, (2013).  doi: 10.1007/978-88-7642-429-8.  Google Scholar

[7]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in $\mathbbR^N$,, J. Differential Equations, 184 (2002), 475.  doi: 10.1006/jdeq.2001.4150.  Google Scholar

[8]

G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem -div$(\frac{Du}{|Du|}) = u$,, SIAM J. Math. Anal., 36 (2005), 1095.  doi: 10.1137/S0036141003430007.  Google Scholar

[9]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Math. Notes, (1978).   Google Scholar

[10]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[11]

J. Buckland, Mean curvature flow with free boundary on smooth hypersurfaces,, J. Reine Angew. Math., 586 (2005), 71.  doi: 10.1515/crll.2005.2005.586.71.  Google Scholar

[12]

V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions,, Multiscale Model. Simul., 6 (2007), 879.  doi: 10.1137/070683003.  Google Scholar

[13]

V. Caselles, A. Chambolle and M. Novaga, Total variation in imaging,, in Handbook of Mathematical Methods in Imaging, (2011), 1016.  doi: 10.1007/978-0-387-92920-0_23.  Google Scholar

[14]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing,, Comm. Partial Differential Equations, 38 (2013), 780.  doi: 10.1080/03605302.2013.771508.  Google Scholar

[15]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis,, in Theoretical Foundations and Numerical Methods for Sparse Recovery, (2010), 263.  doi: 10.1515/9783110226157.263.  Google Scholar

[16]

K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature,, Math. Z., 180 (1982), 179.  doi: 10.1007/BF01318902.  Google Scholar

[17]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math., 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[18]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature,, Invent. Math., 105 (1991), 547.  doi: 10.1007/BF01232278.  Google Scholar

[19]

M. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.   Google Scholar

[20]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature,, J. Differential Equations, 36 (1980), 139.  doi: 10.1016/0022-0396(80)90081-9.  Google Scholar

[21]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[22]

A. Lichnewski and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340.  doi: 10.1016/0022-0396(78)90005-0.  Google Scholar

[23]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[24]

U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 55 (1974), 357.   Google Scholar

[25]

I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal argorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[26]

A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition,, Calc. Var. Partial Differential Equations, 4 (1996), 385.  doi: 10.1007/BF01190825.  Google Scholar

[27]

I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector,, J. Reine Angew. Math., 334 (1982), 27.  doi: 10.1515/crll.1982.334.27.  Google Scholar

show all references

References:
[1]

L. Ambrosio, Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime,, Edizioni della Scuola Normale, (1997).   Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[3]

F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516.  doi: 10.1006/jfan.2001.3829.  Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,, Oxford Mathematical Monographs, (2004).  doi: 10.1007/978-3-0348-7928-6.  Google Scholar

[5]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. Mat. Pura Appl., 135 (1983), 293.  doi: 10.1007/BF01781073.  Google Scholar

[6]

G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations,, Edizioni della Scuola Normale, (2013).  doi: 10.1007/978-88-7642-429-8.  Google Scholar

[7]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in $\mathbbR^N$,, J. Differential Equations, 184 (2002), 475.  doi: 10.1006/jdeq.2001.4150.  Google Scholar

[8]

G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem -div$(\frac{Du}{|Du|}) = u$,, SIAM J. Math. Anal., 36 (2005), 1095.  doi: 10.1137/S0036141003430007.  Google Scholar

[9]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Math. Notes, (1978).   Google Scholar

[10]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[11]

J. Buckland, Mean curvature flow with free boundary on smooth hypersurfaces,, J. Reine Angew. Math., 586 (2005), 71.  doi: 10.1515/crll.2005.2005.586.71.  Google Scholar

[12]

V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions,, Multiscale Model. Simul., 6 (2007), 879.  doi: 10.1137/070683003.  Google Scholar

[13]

V. Caselles, A. Chambolle and M. Novaga, Total variation in imaging,, in Handbook of Mathematical Methods in Imaging, (2011), 1016.  doi: 10.1007/978-0-387-92920-0_23.  Google Scholar

[14]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing,, Comm. Partial Differential Equations, 38 (2013), 780.  doi: 10.1080/03605302.2013.771508.  Google Scholar

[15]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis,, in Theoretical Foundations and Numerical Methods for Sparse Recovery, (2010), 263.  doi: 10.1515/9783110226157.263.  Google Scholar

[16]

K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature,, Math. Z., 180 (1982), 179.  doi: 10.1007/BF01318902.  Google Scholar

[17]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math., 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[18]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature,, Invent. Math., 105 (1991), 547.  doi: 10.1007/BF01232278.  Google Scholar

[19]

M. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.   Google Scholar

[20]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature,, J. Differential Equations, 36 (1980), 139.  doi: 10.1016/0022-0396(80)90081-9.  Google Scholar

[21]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[22]

A. Lichnewski and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340.  doi: 10.1016/0022-0396(78)90005-0.  Google Scholar

[23]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[24]

U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 55 (1974), 357.   Google Scholar

[25]

I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal argorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[26]

A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition,, Calc. Var. Partial Differential Equations, 4 (1996), 385.  doi: 10.1007/BF01190825.  Google Scholar

[27]

I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector,, J. Reine Angew. Math., 334 (1982), 27.  doi: 10.1515/crll.1982.334.27.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[3]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[19]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[20]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

[Back to Top]