-
Previous Article
Extremal domains for the first eigenvalue in a general compact Riemannian manifold
- DCDS Home
- This Issue
-
Next Article
On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations
Short-time existence of the second order renormalization group flow in dimension three
1. | Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy, Italy |
References:
[1] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-13006-3. |
[2] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 2008. |
[3] |
V. Bour, Fourth order curvature flows and geometric applications, preprint, 2010. |
[4] |
J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds, Proc. Amer. Math. Soc., 134 (2006), 1803-1807 (electronic).
doi: 10.1090/S0002-9939-05-08204-3. |
[5] |
M. Carfora, Renormalization group and the Ricci flow, Milan J. Math., 78 (2010), 319-353.
doi: 10.1007/s00032-010-0110-y. |
[6] |
M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow, Classical Quantum Gravity, 5 (1988), 659-693.
doi: 10.1088/0264-9381/5/5/005. |
[7] |
B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature, Turkish J. Math., 28 (2004), 1-10. |
[8] |
B. Chow and D. Knopf, The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
doi: 10.1090/surv/110. |
[9] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom., 18 (1983), 157-162. |
[10] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version), in Collected Papers on Ricci Flow (eds. H.-D. Cao, B. Chow, S.-C. Chu and S.-T. Yau), Series in Geometry and Topology, 37, Int. Press, 2003, 163-165. |
[11] |
J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
doi: 10.2307/2373037. |
[12] |
D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions, Phys. Rev. Lett., 45 (1980), 1057-1060.
doi: 10.1103/PhysRevLett.45.1057. |
[13] |
D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions, Ann. Physics, 163 (1985), 318-419.
doi: 10.1016/0003-4916(85)90384-7. |
[14] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, NJ, 1964. |
[15] |
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer-Verlag, 1990.
doi: 10.1007/978-3-642-97242-3. |
[16] |
K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow, J. Fixed Point Theory Appl., 14 (2013), 3-20.
doi: 10.1007/s11784-014-0162-7. |
[17] |
K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries, Comm. Anal. Geom., 21 (2013), 435-467.
doi: 10.4310/CAG.2013.v21.n2.a7. |
[18] |
K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions, preprint, 2014. |
[19] |
C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models, Lett. Math. Phys., 84 (2008), 149-157.
doi: 10.1007/s11005-008-0245-8. |
[20] |
R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982), 255-306. |
[21] |
I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action, Nuclear Phys. B, 322 (1989), 431-470.
doi: 10.1016/0550-3213(89)90422-7. |
[22] |
J. Lott, Renormalization group flow for general $\sigma$-models, Comm. Math. Phys., 107 (1986), 165-176.
doi: 10.1007/BF01206956. |
[23] |
C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857-874. |
[24] |
T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions, Classical Quantum Gravity, 26 (2009), 105020, 8pp.
doi: 10.1088/0264-9381/26/10/105020. |
[25] |
T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order, Phys. Rev. D, 76 (2007), 045001, 7pp.
doi: 10.1103/PhysRevD.76.045001. |
[26] |
P. Topping, Lectures on the Ricci Flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511721465. |
[27] |
A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy, Phys. Rev. D, 75 (2007), 064024, 6pp.
doi: 10.1103/PhysRevD.75.064024. |
show all references
References:
[1] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-13006-3. |
[2] |
A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 2008. |
[3] |
V. Bour, Fourth order curvature flows and geometric applications, preprint, 2010. |
[4] |
J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds, Proc. Amer. Math. Soc., 134 (2006), 1803-1807 (electronic).
doi: 10.1090/S0002-9939-05-08204-3. |
[5] |
M. Carfora, Renormalization group and the Ricci flow, Milan J. Math., 78 (2010), 319-353.
doi: 10.1007/s00032-010-0110-y. |
[6] |
M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow, Classical Quantum Gravity, 5 (1988), 659-693.
doi: 10.1088/0264-9381/5/5/005. |
[7] |
B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature, Turkish J. Math., 28 (2004), 1-10. |
[8] |
B. Chow and D. Knopf, The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
doi: 10.1090/surv/110. |
[9] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Diff. Geom., 18 (1983), 157-162. |
[10] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version), in Collected Papers on Ricci Flow (eds. H.-D. Cao, B. Chow, S.-C. Chu and S.-T. Yau), Series in Geometry and Topology, 37, Int. Press, 2003, 163-165. |
[11] |
J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160.
doi: 10.2307/2373037. |
[12] |
D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions, Phys. Rev. Lett., 45 (1980), 1057-1060.
doi: 10.1103/PhysRevLett.45.1057. |
[13] |
D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions, Ann. Physics, 163 (1985), 318-419.
doi: 10.1016/0003-4916(85)90384-7. |
[14] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, NJ, 1964. |
[15] |
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer-Verlag, 1990.
doi: 10.1007/978-3-642-97242-3. |
[16] |
K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow, J. Fixed Point Theory Appl., 14 (2013), 3-20.
doi: 10.1007/s11784-014-0162-7. |
[17] |
K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries, Comm. Anal. Geom., 21 (2013), 435-467.
doi: 10.4310/CAG.2013.v21.n2.a7. |
[18] |
K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions, preprint, 2014. |
[19] |
C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models, Lett. Math. Phys., 84 (2008), 149-157.
doi: 10.1007/s11005-008-0245-8. |
[20] |
R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982), 255-306. |
[21] |
I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action, Nuclear Phys. B, 322 (1989), 431-470.
doi: 10.1016/0550-3213(89)90422-7. |
[22] |
J. Lott, Renormalization group flow for general $\sigma$-models, Comm. Math. Phys., 107 (1986), 165-176.
doi: 10.1007/BF01206956. |
[23] |
C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857-874. |
[24] |
T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions, Classical Quantum Gravity, 26 (2009), 105020, 8pp.
doi: 10.1088/0264-9381/26/10/105020. |
[25] |
T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order, Phys. Rev. D, 76 (2007), 045001, 7pp.
doi: 10.1103/PhysRevD.76.045001. |
[26] |
P. Topping, Lectures on the Ricci Flow, London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511721465. |
[27] |
A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy, Phys. Rev. D, 75 (2007), 064024, 6pp.
doi: 10.1103/PhysRevD.75.064024. |
[1] |
I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191 |
[2] |
Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65 |
[3] |
Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093 |
[4] |
Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437 |
[5] |
Ning Sun, Shaoyun Shi, Wenlei Li. Singular renormalization group approach to SIS problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3577-3596. doi: 10.3934/dcdsb.2020073 |
[6] |
Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559 |
[7] |
Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243 |
[8] |
Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137 |
[9] |
Shenglong Hu. A note on the solvability of a tensor equation. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021146 |
[10] |
G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131 |
[11] |
Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089 |
[12] |
Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161 |
[13] |
Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881 |
[14] |
Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241 |
[15] |
Evgeny Galakhov. Some nonexistence results for quasilinear PDE's. Communications on Pure and Applied Analysis, 2007, 6 (1) : 141-161. doi: 10.3934/cpaa.2007.6.141 |
[16] |
Alberto Bressan, Fang Yu. Continuous Riemann solvers for traffic flow at a junction. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4149-4171. doi: 10.3934/dcds.2015.35.4149 |
[17] |
Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010 |
[18] |
Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 |
[19] |
Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure and Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133 |
[20] |
Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]