December  2015, 35(12): 5787-5798. doi: 10.3934/dcds.2015.35.5787

Short-time existence of the second order renormalization group flow in dimension three

1. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy, Italy

Received  January 2014 Published  May 2015

Given a compact three--manifold together with a Riemannian metric, we prove the short--time existence of a solution to the renormalization group flow, truncated at the second order term, under a suitable hypothesis on the sectional curvature of the initial metric.
Citation: Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787
References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. L. Besse, Einstein Manifolds,, Springer-Verlag, (2008).   Google Scholar

[3]

V. Bour, Fourth order curvature flows and geometric applications,, preprint, (2010).   Google Scholar

[4]

J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds,, Proc. Amer. Math. Soc., 134 (2006), 1803.  doi: 10.1090/S0002-9939-05-08204-3.  Google Scholar

[5]

M. Carfora, Renormalization group and the Ricci flow,, Milan J. Math., 78 (2010), 319.  doi: 10.1007/s00032-010-0110-y.  Google Scholar

[6]

M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow,, Classical Quantum Gravity, 5 (1988), 659.  doi: 10.1088/0264-9381/5/5/005.  Google Scholar

[7]

B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature,, Turkish J. Math., 28 (2004), 1.   Google Scholar

[8]

B. Chow and D. Knopf, The Ricci Flow: An Introduction,, Mathematical Surveys and Monographs, (2004).  doi: 10.1090/surv/110.  Google Scholar

[9]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors,, J. Diff. Geom., 18 (1983), 157.   Google Scholar

[10]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version),, in Collected Papers on Ricci Flow (eds. H.-D. Cao, (2003), 163.   Google Scholar

[11]

J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 109.  doi: 10.2307/2373037.  Google Scholar

[12]

D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions,, Phys. Rev. Lett., 45 (1980), 1057.  doi: 10.1103/PhysRevLett.45.1057.  Google Scholar

[13]

D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions,, Ann. Physics, 163 (1985), 318.  doi: 10.1016/0003-4916(85)90384-7.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).   Google Scholar

[15]

S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer-Verlag, (1990).  doi: 10.1007/978-3-642-97242-3.  Google Scholar

[16]

K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow,, J. Fixed Point Theory Appl., 14 (2013), 3.  doi: 10.1007/s11784-014-0162-7.  Google Scholar

[17]

K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries,, Comm. Anal. Geom., 21 (2013), 435.  doi: 10.4310/CAG.2013.v21.n2.a7.  Google Scholar

[18]

K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions,, preprint, (2014).   Google Scholar

[19]

C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models,, Lett. Math. Phys., 84 (2008), 149.  doi: 10.1007/s11005-008-0245-8.  Google Scholar

[20]

R. S. Hamilton, Three-manifolds with positive Ricci curvature,, J. Diff. Geom., 17 (1982), 255.   Google Scholar

[21]

I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action,, Nuclear Phys. B, 322 (1989), 431.  doi: 10.1016/0550-3213(89)90422-7.  Google Scholar

[22]

J. Lott, Renormalization group flow for general $\sigma$-models,, Comm. Math. Phys., 107 (1986), 165.  doi: 10.1007/BF01206956.  Google Scholar

[23]

C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds,, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857.   Google Scholar

[24]

T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions,, Classical Quantum Gravity, 26 (2009).  doi: 10.1088/0264-9381/26/10/105020.  Google Scholar

[25]

T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order,, Phys. Rev. D, 76 (2007).  doi: 10.1103/PhysRevD.76.045001.  Google Scholar

[26]

P. Topping, Lectures on the Ricci Flow,, London Mathematical Society Lecture Note Series, (2006).  doi: 10.1017/CBO9780511721465.  Google Scholar

[27]

A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy,, Phys. Rev. D, 75 (2007).  doi: 10.1103/PhysRevD.75.064024.  Google Scholar

show all references

References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. L. Besse, Einstein Manifolds,, Springer-Verlag, (2008).   Google Scholar

[3]

V. Bour, Fourth order curvature flows and geometric applications,, preprint, (2010).   Google Scholar

[4]

J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds,, Proc. Amer. Math. Soc., 134 (2006), 1803.  doi: 10.1090/S0002-9939-05-08204-3.  Google Scholar

[5]

M. Carfora, Renormalization group and the Ricci flow,, Milan J. Math., 78 (2010), 319.  doi: 10.1007/s00032-010-0110-y.  Google Scholar

[6]

M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow,, Classical Quantum Gravity, 5 (1988), 659.  doi: 10.1088/0264-9381/5/5/005.  Google Scholar

[7]

B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature,, Turkish J. Math., 28 (2004), 1.   Google Scholar

[8]

B. Chow and D. Knopf, The Ricci Flow: An Introduction,, Mathematical Surveys and Monographs, (2004).  doi: 10.1090/surv/110.  Google Scholar

[9]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors,, J. Diff. Geom., 18 (1983), 157.   Google Scholar

[10]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version),, in Collected Papers on Ricci Flow (eds. H.-D. Cao, (2003), 163.   Google Scholar

[11]

J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 109.  doi: 10.2307/2373037.  Google Scholar

[12]

D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions,, Phys. Rev. Lett., 45 (1980), 1057.  doi: 10.1103/PhysRevLett.45.1057.  Google Scholar

[13]

D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions,, Ann. Physics, 163 (1985), 318.  doi: 10.1016/0003-4916(85)90384-7.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).   Google Scholar

[15]

S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer-Verlag, (1990).  doi: 10.1007/978-3-642-97242-3.  Google Scholar

[16]

K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow,, J. Fixed Point Theory Appl., 14 (2013), 3.  doi: 10.1007/s11784-014-0162-7.  Google Scholar

[17]

K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries,, Comm. Anal. Geom., 21 (2013), 435.  doi: 10.4310/CAG.2013.v21.n2.a7.  Google Scholar

[18]

K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions,, preprint, (2014).   Google Scholar

[19]

C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models,, Lett. Math. Phys., 84 (2008), 149.  doi: 10.1007/s11005-008-0245-8.  Google Scholar

[20]

R. S. Hamilton, Three-manifolds with positive Ricci curvature,, J. Diff. Geom., 17 (1982), 255.   Google Scholar

[21]

I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action,, Nuclear Phys. B, 322 (1989), 431.  doi: 10.1016/0550-3213(89)90422-7.  Google Scholar

[22]

J. Lott, Renormalization group flow for general $\sigma$-models,, Comm. Math. Phys., 107 (1986), 165.  doi: 10.1007/BF01206956.  Google Scholar

[23]

C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds,, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857.   Google Scholar

[24]

T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions,, Classical Quantum Gravity, 26 (2009).  doi: 10.1088/0264-9381/26/10/105020.  Google Scholar

[25]

T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order,, Phys. Rev. D, 76 (2007).  doi: 10.1103/PhysRevD.76.045001.  Google Scholar

[26]

P. Topping, Lectures on the Ricci Flow,, London Mathematical Society Lecture Note Series, (2006).  doi: 10.1017/CBO9780511721465.  Google Scholar

[27]

A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy,, Phys. Rev. D, 75 (2007).  doi: 10.1103/PhysRevD.75.064024.  Google Scholar

[1]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[2]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[3]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[4]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[5]

Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559

[6]

Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243

[7]

Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137

[8]

G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131

[9]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[10]

Nathan Glatt-Holtz, Mohammed Ziane. Singular perturbation systems with stochastic forcing and the renormalization group method. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1241-1268. doi: 10.3934/dcds.2010.26.1241

[11]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[12]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[13]

Evgeny Galakhov. Some nonexistence results for quasilinear PDE's. Communications on Pure & Applied Analysis, 2007, 6 (1) : 141-161. doi: 10.3934/cpaa.2007.6.141

[14]

Alberto Bressan, Fang Yu. Continuous Riemann solvers for traffic flow at a junction. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4149-4171. doi: 10.3934/dcds.2015.35.4149

[15]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks & Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[16]

Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure & Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133

[17]

Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175

[18]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[19]

Alberto Bressan, Anders Nordli. The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks & Heterogeneous Media, 2017, 12 (2) : 173-189. doi: 10.3934/nhm.2017007

[20]

Gunduz Caginalp, Mark DeSantis. Multi-group asset flow equations and stability. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 109-150. doi: 10.3934/dcdsb.2011.16.109

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]