-
Previous Article
Extremal domains for the first eigenvalue in a general compact Riemannian manifold
- DCDS Home
- This Issue
-
Next Article
On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations
Short-time existence of the second order renormalization group flow in dimension three
1. | Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy, Italy |
References:
[1] |
Springer-Verlag, 1998.
doi: 10.1007/978-3-662-13006-3. |
[2] |
Springer-Verlag, Berlin, 2008. |
[3] |
preprint, 2010. Google Scholar |
[4] |
Proc. Amer. Math. Soc., 134 (2006), 1803-1807 (electronic).
doi: 10.1090/S0002-9939-05-08204-3. |
[5] |
Milan J. Math., 78 (2010), 319-353.
doi: 10.1007/s00032-010-0110-y. |
[6] |
Classical Quantum Gravity, 5 (1988), 659-693.
doi: 10.1088/0264-9381/5/5/005. |
[7] |
Turkish J. Math., 28 (2004), 1-10. |
[8] |
Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
doi: 10.1090/surv/110. |
[9] |
J. Diff. Geom., 18 (1983), 157-162. |
[10] |
in Collected Papers on Ricci Flow (eds. H.-D. Cao, B. Chow, S.-C. Chu and S.-T. Yau), Series in Geometry and Topology, 37, Int. Press, 2003, 163-165. Google Scholar |
[11] |
Amer. J. Math., 86 (1964), 109-160.
doi: 10.2307/2373037. |
[12] |
Phys. Rev. Lett., 45 (1980), 1057-1060.
doi: 10.1103/PhysRevLett.45.1057. |
[13] |
Ann. Physics, 163 (1985), 318-419.
doi: 10.1016/0003-4916(85)90384-7. |
[14] |
Prentice-Hall Inc., Englewood Cliffs, NJ, 1964. |
[15] |
Springer-Verlag, 1990.
doi: 10.1007/978-3-642-97242-3. |
[16] |
J. Fixed Point Theory Appl., 14 (2013), 3-20.
doi: 10.1007/s11784-014-0162-7. |
[17] |
Comm. Anal. Geom., 21 (2013), 435-467.
doi: 10.4310/CAG.2013.v21.n2.a7. |
[18] |
preprint, 2014. Google Scholar |
[19] |
Lett. Math. Phys., 84 (2008), 149-157.
doi: 10.1007/s11005-008-0245-8. |
[20] |
J. Diff. Geom., 17 (1982), 255-306. |
[21] |
Nuclear Phys. B, 322 (1989), 431-470.
doi: 10.1016/0550-3213(89)90422-7. |
[22] |
Comm. Math. Phys., 107 (1986), 165-176.
doi: 10.1007/BF01206956. |
[23] |
Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857-874. |
[24] |
Classical Quantum Gravity, 26 (2009), 105020, 8pp.
doi: 10.1088/0264-9381/26/10/105020. |
[25] |
Phys. Rev. D, 76 (2007), 045001, 7pp.
doi: 10.1103/PhysRevD.76.045001. |
[26] |
London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511721465. |
[27] |
Phys. Rev. D, 75 (2007), 064024, 6pp.
doi: 10.1103/PhysRevD.75.064024. |
show all references
References:
[1] |
Springer-Verlag, 1998.
doi: 10.1007/978-3-662-13006-3. |
[2] |
Springer-Verlag, Berlin, 2008. |
[3] |
preprint, 2010. Google Scholar |
[4] |
Proc. Amer. Math. Soc., 134 (2006), 1803-1807 (electronic).
doi: 10.1090/S0002-9939-05-08204-3. |
[5] |
Milan J. Math., 78 (2010), 319-353.
doi: 10.1007/s00032-010-0110-y. |
[6] |
Classical Quantum Gravity, 5 (1988), 659-693.
doi: 10.1088/0264-9381/5/5/005. |
[7] |
Turkish J. Math., 28 (2004), 1-10. |
[8] |
Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004.
doi: 10.1090/surv/110. |
[9] |
J. Diff. Geom., 18 (1983), 157-162. |
[10] |
in Collected Papers on Ricci Flow (eds. H.-D. Cao, B. Chow, S.-C. Chu and S.-T. Yau), Series in Geometry and Topology, 37, Int. Press, 2003, 163-165. Google Scholar |
[11] |
Amer. J. Math., 86 (1964), 109-160.
doi: 10.2307/2373037. |
[12] |
Phys. Rev. Lett., 45 (1980), 1057-1060.
doi: 10.1103/PhysRevLett.45.1057. |
[13] |
Ann. Physics, 163 (1985), 318-419.
doi: 10.1016/0003-4916(85)90384-7. |
[14] |
Prentice-Hall Inc., Englewood Cliffs, NJ, 1964. |
[15] |
Springer-Verlag, 1990.
doi: 10.1007/978-3-642-97242-3. |
[16] |
J. Fixed Point Theory Appl., 14 (2013), 3-20.
doi: 10.1007/s11784-014-0162-7. |
[17] |
Comm. Anal. Geom., 21 (2013), 435-467.
doi: 10.4310/CAG.2013.v21.n2.a7. |
[18] |
preprint, 2014. Google Scholar |
[19] |
Lett. Math. Phys., 84 (2008), 149-157.
doi: 10.1007/s11005-008-0245-8. |
[20] |
J. Diff. Geom., 17 (1982), 255-306. |
[21] |
Nuclear Phys. B, 322 (1989), 431-470.
doi: 10.1016/0550-3213(89)90422-7. |
[22] |
Comm. Math. Phys., 107 (1986), 165-176.
doi: 10.1007/BF01206956. |
[23] |
Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857-874. |
[24] |
Classical Quantum Gravity, 26 (2009), 105020, 8pp.
doi: 10.1088/0264-9381/26/10/105020. |
[25] |
Phys. Rev. D, 76 (2007), 045001, 7pp.
doi: 10.1103/PhysRevD.76.045001. |
[26] |
London Mathematical Society Lecture Note Series, 325, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511721465. |
[27] |
Phys. Rev. D, 75 (2007), 064024, 6pp.
doi: 10.1103/PhysRevD.75.064024. |
[1] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[2] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[3] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[4] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[5] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[6] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[7] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[8] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[9] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038 |
[10] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[11] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[12] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[13] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[14] |
Danielle Hilhorst, Pierre Roux. A hyperbolic-elliptic-parabolic PDE model describing chemotactic E. Coli colonies. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021033 |
[15] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[16] |
Misha Perepelitsa. A model of cultural evolution in the context of strategic conflict. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021014 |
[17] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[18] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[19] |
Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021026 |
[20] |
Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021080 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]