• Previous Article
    Harnack type inequalities for some doubly nonlinear singular parabolic equations
  • DCDS Home
  • This Issue
  • Next Article
    Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems
December  2015, 35(12): 5879-5908. doi: 10.3934/dcds.2015.35.5879

A partially hinged rectangular plate as a model for suspension bridges

1. 

Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy

2. 

Dipartimento di Matematica Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano

Received  July 2013 Published  May 2015

A plate model describing the statics and dynamics of a suspension bridge is suggested. A partially hinged plate subject to nonlinear restoring hangers is considered. The whole theory from linear problems, through nonlinear stationary equations, ending with the full hyperbolic evolution equation is studied. This paper aims to be the starting point for more refined models.
Citation: Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

B. Akesson, Understanding Bridges Collapses,, CRC Press, (2008).   Google Scholar

[4]

O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge,, Federal Works Agency, (1941).   Google Scholar

[5]

G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse,, Appl. Math. Modelling, 39 (2015), 901.  doi: 10.1016/j.apm.2014.06.022.  Google Scholar

[6]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations,, J. Diff. Eq., 251 (2011), 2696.  doi: 10.1016/j.jde.2011.05.036.  Google Scholar

[7]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges,, Earthquake Engineering & Structural Dynamics, 23 (1994), 1351.  doi: 10.1002/eqe.4290231206.  Google Scholar

[8]

K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der direkten methoden der variationsrechnung),, Math. Ann., 98 (1928), 205.  doi: 10.1007/BF01451590.  Google Scholar

[9]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051110.  Google Scholar

[10]

F. Gazzola, Nonlinearity in oscillating bridges,, Electron. J. Diff. Equ., (2013), 1.   Google Scholar

[11]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems,, Lecture Notes in Mathematics, (1991).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[12]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,, Nonlinear Analysis, 74 (2011), 6696.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[13]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations,, Arch. Rat. Mech. Anal., 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[14]

D. Imhof, Risk Assessment of Existing Bridge Structure,, PhD Dissertation, (2004).   Google Scholar

[15]

T. Kawada, History of the modern suspension bridge: Solving the dilemma between economy and stiffness,, ASCE Press, (2010).  doi: 10.1061/9780784410189.  Google Scholar

[16]

G. R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe,, J. Reine Angew. Math., 1850 (2009), 51.  doi: 10.1515/crll.1850.40.51.  Google Scholar

[17]

W. Lacarbonara, Nonlinear Structural Mechanics,, Springer, (2013).  doi: 10.1007/978-1-4419-1276-3.  Google Scholar

[18]

R. S. Lakes, Foam structures with a negative Poisson's ratio,, Science, 235 (1987), 1038.  doi: 10.1126/science.235.4792.1038.  Google Scholar

[19]

A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems,, Ann. Inst. H. Poincaré Anal. non Lin., 4 (1987), 243.   Google Scholar

[20]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[21]

M. Lévy, Sur l'équilibre élastique d'une plaque rectangulaire,, Comptes Rendus Acad. Sci. Paris, 129 (1899), 535.   Google Scholar

[22]

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity,, Fourth edition, (1927).   Google Scholar

[23]

E. H. Mansfield, The Bending and Stretching of Plates,, Second edition, (1989).  doi: 10.1017/CBO9780511525193.  Google Scholar

[24]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains,, Mathematical Surveys and Monographs, (2010).  doi: 10.1090/surv/162.  Google Scholar

[25]

P. J. McKenna, Torsional oscillations in suspension bridges revisited: Fixing an old approximation,, Amer. Math. Monthly, 106 (1999), 1.  doi: 10.2307/2589581.  Google Scholar

[26]

P. J. McKenna and C. Ó. Tuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response,, Amer. Math. Monthly, 108 (2001), 738.  doi: 10.2307/2695617.  Google Scholar

[27]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rat. Mech. Anal., 98 (1987), 167.  doi: 10.1007/BF00251232.  Google Scholar

[28]

P. J. McKenna and W. Walter, Travelling waves in a suspension bridge,, SIAM J. Appl. Math., 50 (1990), 703.  doi: 10.1137/0150041.  Google Scholar

[29]

A. Nadai, Die Elastischen Platten,, Springer-Verlag, (1968).  doi: 10.1007/978-3-642-99170-7.  Google Scholar

[30]

C. L. Navier, Extraits des recherches sur la flexion des plans élastiques,, Bulletin des Sciences de la Société Philomathique de Paris, (1823), 92.   Google Scholar

[31]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges,, J. Sound and Vibration, 307 (2007), 894.  doi: 10.1016/j.jsv.2007.07.036.  Google Scholar

[32]

R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability,, ASCE Press, (2001).  doi: 10.1061/9780784405420.  Google Scholar

[33]

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications,, Marcel Dekker Inc., (2001).  doi: 10.1201/9780203908723.  Google Scholar

[34]

Tacoma Narrows Bridge Collapse, http://www.youtube.com/watch?v=3mclp9QmCGs,, 1940., ().   Google Scholar

[35]

O. Zanaboni, Risoluzione, in serie semplice, della lastra rettangolare appoggiata, sottoposta all'azione di un carico concentrato comunque disposto,, Annali Mat. Pura Appl., 19 (1940), 107.  doi: 10.1007/BF02410542.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

B. Akesson, Understanding Bridges Collapses,, CRC Press, (2008).   Google Scholar

[4]

O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge,, Federal Works Agency, (1941).   Google Scholar

[5]

G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse,, Appl. Math. Modelling, 39 (2015), 901.  doi: 10.1016/j.apm.2014.06.022.  Google Scholar

[6]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations,, J. Diff. Eq., 251 (2011), 2696.  doi: 10.1016/j.jde.2011.05.036.  Google Scholar

[7]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges,, Earthquake Engineering & Structural Dynamics, 23 (1994), 1351.  doi: 10.1002/eqe.4290231206.  Google Scholar

[8]

K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der direkten methoden der variationsrechnung),, Math. Ann., 98 (1928), 205.  doi: 10.1007/BF01451590.  Google Scholar

[9]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051110.  Google Scholar

[10]

F. Gazzola, Nonlinearity in oscillating bridges,, Electron. J. Diff. Equ., (2013), 1.   Google Scholar

[11]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems,, Lecture Notes in Mathematics, (1991).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[12]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,, Nonlinear Analysis, 74 (2011), 6696.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[13]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations,, Arch. Rat. Mech. Anal., 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[14]

D. Imhof, Risk Assessment of Existing Bridge Structure,, PhD Dissertation, (2004).   Google Scholar

[15]

T. Kawada, History of the modern suspension bridge: Solving the dilemma between economy and stiffness,, ASCE Press, (2010).  doi: 10.1061/9780784410189.  Google Scholar

[16]

G. R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe,, J. Reine Angew. Math., 1850 (2009), 51.  doi: 10.1515/crll.1850.40.51.  Google Scholar

[17]

W. Lacarbonara, Nonlinear Structural Mechanics,, Springer, (2013).  doi: 10.1007/978-1-4419-1276-3.  Google Scholar

[18]

R. S. Lakes, Foam structures with a negative Poisson's ratio,, Science, 235 (1987), 1038.  doi: 10.1126/science.235.4792.1038.  Google Scholar

[19]

A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems,, Ann. Inst. H. Poincaré Anal. non Lin., 4 (1987), 243.   Google Scholar

[20]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[21]

M. Lévy, Sur l'équilibre élastique d'une plaque rectangulaire,, Comptes Rendus Acad. Sci. Paris, 129 (1899), 535.   Google Scholar

[22]

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity,, Fourth edition, (1927).   Google Scholar

[23]

E. H. Mansfield, The Bending and Stretching of Plates,, Second edition, (1989).  doi: 10.1017/CBO9780511525193.  Google Scholar

[24]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains,, Mathematical Surveys and Monographs, (2010).  doi: 10.1090/surv/162.  Google Scholar

[25]

P. J. McKenna, Torsional oscillations in suspension bridges revisited: Fixing an old approximation,, Amer. Math. Monthly, 106 (1999), 1.  doi: 10.2307/2589581.  Google Scholar

[26]

P. J. McKenna and C. Ó. Tuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response,, Amer. Math. Monthly, 108 (2001), 738.  doi: 10.2307/2695617.  Google Scholar

[27]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rat. Mech. Anal., 98 (1987), 167.  doi: 10.1007/BF00251232.  Google Scholar

[28]

P. J. McKenna and W. Walter, Travelling waves in a suspension bridge,, SIAM J. Appl. Math., 50 (1990), 703.  doi: 10.1137/0150041.  Google Scholar

[29]

A. Nadai, Die Elastischen Platten,, Springer-Verlag, (1968).  doi: 10.1007/978-3-642-99170-7.  Google Scholar

[30]

C. L. Navier, Extraits des recherches sur la flexion des plans élastiques,, Bulletin des Sciences de la Société Philomathique de Paris, (1823), 92.   Google Scholar

[31]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges,, J. Sound and Vibration, 307 (2007), 894.  doi: 10.1016/j.jsv.2007.07.036.  Google Scholar

[32]

R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability,, ASCE Press, (2001).  doi: 10.1061/9780784405420.  Google Scholar

[33]

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications,, Marcel Dekker Inc., (2001).  doi: 10.1201/9780203908723.  Google Scholar

[34]

Tacoma Narrows Bridge Collapse, http://www.youtube.com/watch?v=3mclp9QmCGs,, 1940., ().   Google Scholar

[35]

O. Zanaboni, Risoluzione, in serie semplice, della lastra rettangolare appoggiata, sottoposta all'azione di un carico concentrato comunque disposto,, Annali Mat. Pura Appl., 19 (1940), 107.  doi: 10.1007/BF02410542.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[9]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[13]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[16]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[20]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (33)

Other articles
by authors

[Back to Top]