• Previous Article
    Schauder estimates for solutions of linear parabolic integro-differential equations
  • DCDS Home
  • This Issue
  • Next Article
    On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density
December  2015, 35(12): 5963-5976. doi: 10.3934/dcds.2015.35.5963

Ground states for scalar field equations with anisotropic nonlocal nonlinearities

1. 

Department of Mathematics and Computer Science, University of Cagliari, Viale L. Merello 92, 09123 Cagliari, Italy

2. 

Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901

3. 

Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona

Received  January 2014 Published  May 2015

We consider a class of scalar field equations with anisotropic nonlocal nonlinearities. We obtain a suitable extension of the well-known compactness lemma of Benci and Cerami to this variable exponent setting, and use it to prove that the Palais-Smale condition holds at all level below a certain threshold. We deduce the existence of a ground state when the variable exponent slowly approaches the limit at infinity from below.
Citation: Antonio Iannizzotto, Kanishka Perera, Marco Squassina. Ground states for scalar field equations with anisotropic nonlocal nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5963-5976. doi: 10.3934/dcds.2015.35.5963
References:
[1]

A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365.  doi: 10.1016/S0294-1449(97)80142-4.  Google Scholar

[2]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains,, Arch. Rational Mech. Anal., 99 (1987), 283.  doi: 10.1007/BF00282048.  Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. Partial Differential Equations, 36 (2009), 481.  doi: 10.1007/s00526-009-0238-1.  Google Scholar

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[6]

X. Fan and D. Zhao, On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[7]

G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents,, Nonlinear Anal., 85 (2013), 1.  doi: 10.1016/j.na.2013.02.011.  Google Scholar

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[9]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[10]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223.   Google Scholar

[11]

P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems,, Comm. Math. Phys., 109 (1987), 33.  doi: 10.1007/BF01205672.  Google Scholar

[12]

M. Mariş, On the symmetry of minimizers,, Arch. Rational Mech. Anal., 192 (2009), 311.  doi: 10.1007/s00205-008-0136-2.  Google Scholar

[13]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 319.   Google Scholar

[14]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (2008).   Google Scholar

[15]

K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications,, Imperial College Press, (2007).   Google Scholar

show all references

References:
[1]

A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365.  doi: 10.1016/S0294-1449(97)80142-4.  Google Scholar

[2]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains,, Arch. Rational Mech. Anal., 99 (1987), 283.  doi: 10.1007/BF00282048.  Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[4]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. Partial Differential Equations, 36 (2009), 481.  doi: 10.1007/s00526-009-0238-1.  Google Scholar

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017).  doi: 10.1007/978-3-642-18363-8.  Google Scholar

[6]

X. Fan and D. Zhao, On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[7]

G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents,, Nonlinear Anal., 85 (2013), 1.  doi: 10.1016/j.na.2013.02.011.  Google Scholar

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[9]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[10]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223.   Google Scholar

[11]

P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems,, Comm. Math. Phys., 109 (1987), 33.  doi: 10.1007/BF01205672.  Google Scholar

[12]

M. Mariş, On the symmetry of minimizers,, Arch. Rational Mech. Anal., 192 (2009), 311.  doi: 10.1007/s00205-008-0136-2.  Google Scholar

[13]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 319.   Google Scholar

[14]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (2008).   Google Scholar

[15]

K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications,, Imperial College Press, (2007).   Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[14]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[17]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[18]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[20]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

[Back to Top]