\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ground states for scalar field equations with anisotropic nonlocal nonlinearities

Abstract Related Papers Cited by
  • We consider a class of scalar field equations with anisotropic nonlocal nonlinearities. We obtain a suitable extension of the well-known compactness lemma of Benci and Cerami to this variable exponent setting, and use it to prove that the Palais-Smale condition holds at all level below a certain threshold. We deduce the existence of a ground state when the variable exponent slowly approaches the limit at infinity from below.
    Mathematics Subject Classification: Primary: 35J20, 46B50; Secondary: 74G65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413.doi: 10.1016/S0294-1449(97)80142-4.

    [2]

    V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.doi: 10.1007/BF00282048.

    [3]

    H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555.

    [4]

    J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions, Calc. Var. Partial Differential Equations, 36 (2009), 481-492.doi: 10.1007/s00526-009-0238-1.

    [5]

    L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-18363-8.

    [6]

    X. Fan and D. Zhao, On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.doi: 10.1006/jmaa.2000.7617.

    [7]

    G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.doi: 10.1016/j.na.2013.02.011.

    [8]

    M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502.

    [9]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

    [10]

    P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283.

    [11]

    P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1987), 33-97.doi: 10.1007/BF01205672.

    [12]

    M. Mariş, On the symmetry of minimizers, Arch. Rational Mech. Anal., 192 (2009), 311-330.doi: 10.1007/s00205-008-0136-2.

    [13]

    S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 319-337.

    [14]

    M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 2008.

    [15]

    K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications, Imperial College Press, London, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(45) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return