Citation: |
[1] |
A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365-413.doi: 10.1016/S0294-1449(97)80142-4. |
[2] |
V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.doi: 10.1007/BF00282048. |
[3] |
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.doi: 10.1007/BF00250555. |
[4] |
J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions, Calc. Var. Partial Differential Equations, 36 (2009), 481-492.doi: 10.1007/s00526-009-0238-1. |
[5] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-18363-8. |
[6] |
X. Fan and D. Zhao, On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.doi: 10.1006/jmaa.2000.7617. |
[7] |
G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.doi: 10.1016/j.na.2013.02.011. |
[8] |
M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.doi: 10.1007/BF00251502. |
[9] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145. |
[10] |
P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223-283. |
[11] |
P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1987), 33-97.doi: 10.1007/BF01205672. |
[12] |
M. Mariş, On the symmetry of minimizers, Arch. Rational Mech. Anal., 192 (2009), 311-330.doi: 10.1007/s00205-008-0136-2. |
[13] |
S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 319-337. |
[14] |
M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 2008. |
[15] |
K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications, Imperial College Press, London, 2007. |