• Previous Article
    Schauder estimates for solutions of linear parabolic integro-differential equations
  • DCDS Home
  • This Issue
  • Next Article
    On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density
December  2015, 35(12): 5963-5976. doi: 10.3934/dcds.2015.35.5963

Ground states for scalar field equations with anisotropic nonlocal nonlinearities

1. 

Department of Mathematics and Computer Science, University of Cagliari, Viale L. Merello 92, 09123 Cagliari, Italy

2. 

Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901

3. 

Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona

Received  January 2014 Published  May 2015

We consider a class of scalar field equations with anisotropic nonlocal nonlinearities. We obtain a suitable extension of the well-known compactness lemma of Benci and Cerami to this variable exponent setting, and use it to prove that the Palais-Smale condition holds at all level below a certain threshold. We deduce the existence of a ground state when the variable exponent slowly approaches the limit at infinity from below.
Citation: Antonio Iannizzotto, Kanishka Perera, Marco Squassina. Ground states for scalar field equations with anisotropic nonlocal nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5963-5976. doi: 10.3934/dcds.2015.35.5963
References:
[1]

A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365. doi: 10.1016/S0294-1449(97)80142-4. Google Scholar

[2]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains,, Arch. Rational Mech. Anal., 99 (1987), 283. doi: 10.1007/BF00282048. Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[4]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. Partial Differential Equations, 36 (2009), 481. doi: 10.1007/s00526-009-0238-1. Google Scholar

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017). doi: 10.1007/978-3-642-18363-8. Google Scholar

[6]

X. Fan and D. Zhao, On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617. Google Scholar

[7]

G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents,, Nonlinear Anal., 85 (2013), 1. doi: 10.1016/j.na.2013.02.011. Google Scholar

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 105 (1989), 243. doi: 10.1007/BF00251502. Google Scholar

[9]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109. Google Scholar

[10]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223. Google Scholar

[11]

P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems,, Comm. Math. Phys., 109 (1987), 33. doi: 10.1007/BF01205672. Google Scholar

[12]

M. Mariş, On the symmetry of minimizers,, Arch. Rational Mech. Anal., 192 (2009), 311. doi: 10.1007/s00205-008-0136-2. Google Scholar

[13]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 319. Google Scholar

[14]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (2008). Google Scholar

[15]

K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications,, Imperial College Press, (2007). Google Scholar

show all references

References:
[1]

A. Bahri and P.-L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 365. doi: 10.1016/S0294-1449(97)80142-4. Google Scholar

[2]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains,, Arch. Rational Mech. Anal., 99 (1987), 283. doi: 10.1007/BF00282048. Google Scholar

[3]

H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Rational Mech. Anal., 82 (1983), 313. doi: 10.1007/BF00250555. Google Scholar

[4]

J. Byeon, L. Jeanjean and M. Mariş, Symmetry and monotonicity of least energy solutions,, Calc. Var. Partial Differential Equations, 36 (2009), 481. doi: 10.1007/s00526-009-0238-1. Google Scholar

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, (2017). doi: 10.1007/978-3-642-18363-8. Google Scholar

[6]

X. Fan and D. Zhao, On the spaces $L^{p(\cdot)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617. Google Scholar

[7]

G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents,, Nonlinear Anal., 85 (2013), 1. doi: 10.1016/j.na.2013.02.011. Google Scholar

[8]

M. K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Rational Mech. Anal., 105 (1989), 243. doi: 10.1007/BF00251502. Google Scholar

[9]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109. Google Scholar

[10]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223. Google Scholar

[11]

P.-L. Lions, Solutions of Hartree-Fock equations for Coulomb systems,, Comm. Math. Phys., 109 (1987), 33. doi: 10.1007/BF01205672. Google Scholar

[12]

M. Mariş, On the symmetry of minimizers,, Arch. Rational Mech. Anal., 192 (2009), 311. doi: 10.1007/s00205-008-0136-2. Google Scholar

[13]

S. Solimini, A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 319. Google Scholar

[14]

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (2008). Google Scholar

[15]

K. Tintarev and K.-H. Fieseler, Concentration Compactness. Functional-Analytic Grounds and Applications,, Imperial College Press, (2007). Google Scholar

[1]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[2]

Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099

[3]

Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179

[4]

Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117

[5]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[6]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311

[7]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[8]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[9]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[10]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[11]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[12]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[13]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[14]

Yavdat Il'yasov. On critical exponent for an elliptic equation with non-Lipschitz nonlinearity. Conference Publications, 2011, 2011 (Special) : 698-706. doi: 10.3934/proc.2011.2011.698

[15]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[16]

Xiao-Jing Zhong, Chun-Lei Tang. The existence and nonexistence results of ground state nodal solutions for a Kirchhoff type problem. Communications on Pure & Applied Analysis, 2017, 16 (2) : 611-628. doi: 10.3934/cpaa.2017030

[17]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[18]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[19]

Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2433-2455. doi: 10.3934/cpaa.2019110

[20]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]