\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasistatic evolution of magnetoelastic plates via dimension reduction

Abstract Related Papers Cited by
  • A rate-independent model for the quasistatic evolution of a magnetoelastic plate is advanced and analyzed. Starting from the three-dimensional setting, we present an evolutionary $\Gamma$-convergence argument in order to pass to the limit in one of the material dimensions. By taking into account both conservative and dissipative actions, a nonlinear evolution system of rate-independent type is obtained. The existence of so-called energetic solutions to such system is proved via approximation.
    Mathematics Subject Classification: Primary: 74F15, 74N30, 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Anuniwat, M. Ding, S. J. Poon, S. A. Wolf and J. Lu, Strain-induced enhancement of coercivity in amorphous TbFeCo films, J. Appl. Phys., 113 (2013), 043905.doi: 10.1063/1.4788807.

    [2]

    J.-F. Babadjian, Quasistatic evolution of a brittle thin film, Calc. Var. Partial Differential Equations, 26 (2006), 69-118.doi: 10.1007/s00526-005-0369-y.

    [3]

    B. Benešová, M Kružík and G. Pathó, A mesoscopic thermomechanically coupled model for thin-film shape-memory alloys by dimension reduction and scale transition, Contin. Mech. Thermodyn., 26 (2014), 683-713.doi: 10.1007/s00161-013-0323-8.

    [4]

    A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Z. Angew. Math. Phys., 64 (2013), 343-359.doi: 10.1007/s00033-012-0223-y.

    [5]

    A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069.doi: 10.1142/S0218202511005246.

    [6]

    A. Braides, $\Gamma$-Convergence for Beginners, Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198507840.001.0001.

    [7]

    W. F. Brown, Micromagnetics, {Wiley, New-York, 1963.}

    [8]

    C. Chappert and P. Bruno, Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films, J. Appl. Phys., 64 (1988), p5736.doi: 10.1063/1.342243.

    [9]

    G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäser, Basel, 1993.doi: 10.1007/978-1-4612-0327-8.

    [10]

    D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through thermodynamic compatibility, Smart Mat. Struct., 22 (2013), 095009.

    [11]

    E. Davoli, Linearized plastic plate models as $\Gamma$-limits of 3D finite elastoplasticity, ESAIM Control Optim. Calc. Var., 20 (2014), 725-747.doi: 10.1051/cocv/2013081.

    [12]

    E. Davoli, Quasistatic evolution models for thin plates arising as low energy $\Gamma$-limits of finite plasticity, Math. Models Methods Appl. Sci., 24 (2014), 2085-2153.doi: 10.1142/S021820251450016X.

    [13]

    E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by Gamma-convergence, Ann. Inst. H. Poincaré Anal. Nonlin., 30 (2013), 615-660.doi: 10.1016/j.anihpc.2012.11.001.

    [14]

    A. DeSimone and G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Rational Mech. Anal., 144 (1998), 107-120.doi: 10.1007/s002050050114.

    [15]

    A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.doi: 10.1016/S0022-5096(01)00050-3.

    [16]

    A. Dorfmann and R. W. Ogden, Some problems in nonlinear magnetoelasticity, Z. Angew. Math. Phys., 56 (2005), 718-745.doi: 10.1007/s00033-004-4066-z.

    [17]

    L. Freddi, R. Paroni and C. Zanini, Dimension reduction of a crack evolution problem in a linearly elastic plate, Asymptotic Anal., 70 (2010), 101-123.

    [18]

    L. Freddi, T. Roubíček, R. Paroni and C. Zanini, Quasistatic delamination models for Kirchhoff-Love plates, Z. Angew. Math. Mech., 91 (2011), 845-865.doi: 10.1002/zamm.201000171.

    [19]

    L. Freddi, T. Roubíček and C. Zanini, Quasistatic delamination of sandwich-like Kirchhoff-Love plates, J. Elasticity, 113 (2013), 219-250.doi: 10.1007/s10659-012-9419-9.

    [20]

    V. Gehanno, A. Marty, B. Gilles and Y. Samson, Magnetic domains in epitaxial ordered FePd(001) thin films with perpendicular magnetic anisotropy, Phys. Rev. B, 55 (1997), 12552-12555.doi: 10.1103/PhysRevB.55.12552.

    [21]

    G. Gioia and R. D. James, Micromagnetics of very thin films, Proc. Roy. Soc. Lond. A, 453 (1997), 213-223.doi: 10.1098/rspa.1997.0013.

    [22]

    M. L. Hodgdon, Applications of a theory of ferromagnetic hysteresis, IEEE Trans. Mag., 24 (1988), 218-221.doi: 10.1109/20.43893.

    [23]

    A. Hubert and R. Schäfer, Magnetic Domains, Springer, New York, 1998.

    [24]

    R. D. James, Configurationsl forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever, Contin. Mech. Thermodyn., 14 (2002), 55-86.doi: 10.1007/s001610100072.

    [25]

    R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Continuum Mech. Thermodyn., 2 (1990), 215-239.doi: 10.1007/BF01129598.

    [26]

    M. Kaltenbacher, M. Meiler and M. Ertl, Physical modeling and numerical computation of magnetostriction, COMPEL, 28 (2009), 819-832.doi: 10.1108/03321640910958946.

    [27]

    M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism, SIAM Review, 48 (2006), 439-483.doi: 10.1137/S0036144504446187.

    [28]

    M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via $\Gamma$-convergence, Math. Models Meth. Appl. Sci., 21 (2011), 1961-1986.doi: 10.1142/S0218202511005611.

    [29]

    M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via $\Gamma$-convergence, NoDEA Nonlinear Differential Eq. Applications, 19 (2012), 437-457.doi: 10.1007/s00030-011-0137-y.

    [30]

    A. Mielke, Evolution in rate-independent systems (ch. 6), in Handbook of Differential Equations, Evolutionary Equations (eds. C. Dafermos and E. Feireisl), Vol. 2, Elsevier B. V., 2005, 461-559.

    [31]

    A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics (eds. R. Helmig, A. Mielke and B. Wohlmuth), Series Lecture Notes in Applied and Computational Mechanics, 28, Springer, 2006, 399-428.doi: 10.1007/978-3-540-34961-7_12.

    [32]

    A. Mielke, Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction, Phys. B, 407 (2012), 1330-1335.doi: 10.1016/j.physb.2011.10.013.

    [33]

    A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, M2AN Math. Model. Numer. Anal., 43 (2009), 399-428.doi: 10.1051/m2an/2009009.

    [34]

    A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-imits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.doi: 10.1007/s00526-007-0119-4.

    [35]

    A. Mielke and F. Theil, On rate-independent hysteresis model, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151-189.doi: 10.1007/s00030-003-1052-7.

    [36]

    L. Néel, L'approche a la saturation de la magnétostriction, J. Phys. Radium, 15 (1954), 376-378.

    [37]

    H. J. Richter, The transition from longitudinal to perpendicular recording, J. Phys. D: Appl. Phys., 40 (2007), R149-R177.doi: 10.1088/0022-3727/40/9/R01.

    [38]

    R. T. Rockafellar and R. J.-B Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-642-02431-3.

    [39]

    T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics, Z. Angew. Math. Phys., 55 (2004), 159-182.doi: 10.1007/s00033-003-0110-7.

    [40]

    T. Roubíček and M. Kružík, Mesoscopic model for ferromagnets with isotropic hardening, Z. Angew. Math. Phys., 56 (2005), 107-135.doi: 10.1007/s00033-003-2108-6.

    [41]

    T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis, Contin. Mech. Thermodyn., 26 (2014), 783-810.doi: 10.1007/s00161-014-0339-8.

    [42]

    T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43.doi: 10.1007/s00205-013-0648-2.

    [43]

    P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials, SIAM J. Math. Anal., 36 (2005), 2004-2019.doi: 10.1137/S0036141004442021.

    [44]

    B. Schulz and K. Baberschke, Crossover form in-plane to perpendicular magnetization in ultrathin Ni/Cu(001) films, Phys. Rev. B, 50 (1994), 13467.

    [45]

    A. D. C. Viegas, M. A. Correa, L. Santi, R. B. da Silva, F. Bohn, M. Carara and R. L. Somme, Thickness dependence of the high-frequency magnetic permeability in amorphous $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ thin films, J. Appl. Phys., 101 (2007), 033908.

    [46]

    A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Phys. B, 233 (1997), 365-369.doi: 10.1016/S0921-4526(97)00322-0.

    [47]

    A. Visintin, Maxwell's equations with vector hysteresis, Arch. Ration. Mech. Anal., 175 (2005), 1-37.doi: 10.1007/s00205-004-0333-6.

    [48]

    J. Wang and P. Steinmann, A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys, J. Mech. Phys. Solids, 60 (2012), 1179-1200.doi: 10.1016/j.jmps.2012.02.003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return