\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations

Abstract / Introduction Related Papers Cited by
  • In this work we consider the problems $$ \left\{\begin{array}{rcll} \mathcal{L \,} u&=&f &\hbox{ in } \Omega,\\ u&=&0 &\hbox{ in } \mathbb{R}^N\setminus\Omega, \end{array} \right. $$ and $$ \left\{\begin{array}{rcll} u_t +\mathcal{L \,} u&=&f &\hbox{ in } Q_{T}\equiv\Omega\times (0, T),\\ u (x,t) &=&0 &\hbox{ in } \big(\mathbb{R}^N\setminus\Omega\big) \times (0, T),\\ u(x,0)&=&0 &\hbox{ in } \Omega, \end{array} \right. $$ where $\mathcal{L \,}$ is a nonlocal differential operator and $\Omega$ is a bounded domain in $\mathbb{R}^N$, with Lipschitz boundary.
        The main goal of this work is to study existence, uniqueness and summability of the solution $u$ with respect to the summability of the datum $f$. In the process we establish an $L^p$-theory, for $p \geq 1$, associated to these problems and we prove some useful inequalities for the applications.
    Mathematics Subject Classification: 45K05, 47G20, 35R09, 35D30, 35D35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential, Ann. di Mat. Pura e Applicata, 182 (2003), 247-270.doi: 10.1007/s10231-002-0064-y.

    [2]

    R. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975.

    [3]

    N. Alibaud, B. Andreianov and M. Bendahmane, Renormalized solutions of the fractional Laplace equation, C. R. Math. Acad. Sci. Paris, 348 (2010), 759-762.doi: 10.1016/j.crma.2010.05.006.

    [4]

    G. Alberti and G.Bellettini, A nonlocal anisotropic model for phase transitions. I. The optimal profile problem, Math. Ann., 310 (1998), 527-560.doi: 10.1007/s002080050159.

    [5]

    W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Ana. T.M.P., 32 (1998), 819-830.doi: 10.1016/S0362-546X(97)00530-0.

    [6]

    D. Applebaum, Lévy Processes and Stochastic Calculus, $2^{nd}$ edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511809781.

    [7]

    D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122.doi: 10.1007/BF00281291.

    [8]

    M. T. Barlow, R. F. Bass, Z.-Q. Chen and M. Kassmann, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 361 (2009), 1963-1999.doi: 10.1090/S0002-9947-08-04544-3.

    [9]

    B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex nonlinearities, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, in press, corrected proof, available online 2 May 2014.doi: 10.1016/j.anihpc.2014.04.003.

    [10]

    B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math., 16 (2014), 1350046, 29 pp.doi: 10.1142/S0219199713500466.

    [11]

    B. Barrios, I. Peral and S. Vita, Some remarks about the summability of nonlocal nonlinear problems, Advances in Nonlinear Analysis, Published online February 2015.doi: 10.1515/anona-2015-0012.

    [12]

    L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Existence and regularity results for some nonlinear parabolic equations, Adv. Math. Sci. Appl., 9 (1999), 1017-1031.

    [13]

    L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.doi: 10.1016/0022-1236(89)90005-0.

    [14]

    L. Boccardo, M. M. Porzio and A. Primo, Summability and existence results for nonlinear parabolic equations, Nonlinear Anal., 71 (2009), 978-990.doi: 10.1016/j.na.2008.11.066.

    [15]

    L. Boccardo and G. Croce, Esistenza e Regolarità di Soluzioni di Alcuni Problemi Ellitici, Quaderni dell'UMI. 51, Bologna, 2010.

    [16]

    L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.doi: 10.2996/kmj/1414674621.

    [17]

    H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^n$, Manuscripta Math., 74 (1992), 87-106.doi: 10.1007/BF02567660.

    [18]

    H. Brezis and P. Mironescu, Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., 1 (2001), 387-404.doi: 10.1007/PL00001378.

    [19]

    H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64.doi: 10.1016/0362-546X(86)90011-8.

    [20]

    X. Cabré and J. Sola-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.doi: 10.1002/cpa.20093.

    [21]

    X. Cabré and J. M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.doi: 10.1007/s00220-013-1682-5.

    [22]

    L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979), 1067-1075.doi: 10.1080/03605307908820119.

    [23]

    L. Caffarelli, J. M. Roquejoffre and Y. Sire, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1151-1179.doi: 10.4171/JEMS/226.

    [24]

    L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics. Second Series, 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903.

    [25]

    S. Campanato, Sistemi Ellittici in Forma Divergenza. Regolaritá All'interno, Quaderni Scuola Normale Superiore di Pisa, Pisa, 1980.

    [26]

    W. Craig and M. Groves, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994), 367-389.doi: 10.1016/0165-2125(94)90003-5.

    [27]

    W. Craig, U. Schanz and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincare, Anal. Non Lineaire, 14 (1997), 615-667.doi: 10.1016/S0294-1449(97)80128-X.

    [28]

    R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, 5, Springer-Verlag, 1992.doi: 10.1007/978-3-642-58090-1.

    [29]

    A. Di Castro, T. Kuusi and G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807-1836.doi: 10.1016/j.jfa.2014.05.023.

    [30]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [31]

    S. Dipierro, G. Palatucci and E. Valdinoci, Dislocation dynamics in crystals: A macroscopic theory in a fractional Laplace setting, Commun. Math. Phys., 333 (2015), 1061-1105.doi: 10.1007/s00220-014-2118-6.

    [32]

    M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators, Comm. PDE, 38 (2013), 1539-1573.doi: 10.1080/03605302.2013.808211.

    [33]

    R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.doi: 10.1090/S0894-0347-07-00582-6.

    [34]

    M. Fukushima, On an $L^p$-Estimate of Resolvents of Markov Processes, Publ. RIMS, Kyoto Univ., 13 (1977), 277-284.doi: 10.2977/prims/1195190108.

    [35]

    L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-differential Operators, Reprint of the 1994 edition, Classics in Mathematics, Springer, Berlin, 2007.

    [36]

    K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data, Publ. Mat., 55 (2011), 151-161.doi: 10.5565/PUBLMAT_55111_07.

    [37]

    M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var., 34 (2009), 1-21.doi: 10.1007/s00526-008-0173-6.

    [38]

    M. Kassmann, Harnack inequality: An introduction, Bound. Value Probl., 2007, Art. ID 81415, 21 pp.

    [39]

    T.Kuusi, G.Mingione and Y. Sire, Nonlocal equations with measure data, Preprint available at cvgmt.sns.it.

    [40]

    E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032.

    [41]

    A. Majda and E. Tabak, A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics (Los Alamos, NM, 1995), Phys. D., 98 (1996), 515-522.doi: 10.1016/0167-2789(96)00114-5.

    [42]

    V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second edition, Grundlehren der Mathematischen Wissenschaften, 342, Springer, Heidelberg, 2011.doi: 10.1007/978-3-642-15564-2.

    [43]

    J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math., 13 (1960), 457-468.doi: 10.1002/cpa.3160130308.

    [44]

    A. N. Milgram, Supplement II in Partial Differential Equations, (eds. L. Bers, F. John and M. Schechter), Lectures in Applied Mathematics, Vol. III, Interscience New York, 1964.

    [45]

    G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.doi: 10.1007/s00526-013-0656-y.

    [46]

    G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Annali di Matematica Pura ed Applicata, 192 (2013), 673-718.doi: 10.1007/s10231-011-0243-9.

    [47]

    M. Picone, Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine, Ann. Scuola. Norm. Pisa., 11 (1910), p144.

    [48]

    X. Ros-Oton and J. Serra, The extremal solution for the fractional Laplacian, Calc. Var. Partial Differential Equations, 50 (2014), 723-750.doi: 10.1007/s00526-013-0653-1.

    [49]

    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.doi: 10.1016/j.matpur.2013.06.003.

    [50]

    O. Savin and E. Valdinoci, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal., 19 (2009), 420-432.doi: 10.1007/s12220-008-9064-5.

    [51]

    R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887-898.doi: 10.1016/j.jmaa.2011.12.032.

    [52]

    A. Signorini, Questioni di elasticitá non linearizzata e semilinearizzata, Rendiconti di Matematica e delle sue applicazioni, 18 (1959), 95-139.

    [53]

    L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Communications on Pure and Applied Mathematics, 60 (2007), 67-112.doi: 10.1002/cpa.20153.

    [54]

    L. Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace, Indiana Univ. Math. J., 55 (2006), 1155-1174.doi: 10.1512/iumj.2006.55.2706.

    [55]

    Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.doi: 10.1016/j.jfa.2009.01.020.

    [56]

    G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258.doi: 10.5802/aif.204.

    [57]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970.

    [58]

    E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 7 (1958), 503-514.

    [59]

    E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971.

    [60]

    J. Stoker, Water Waves: The Mathematical Theory with Applications, Pure and Applied Mathematics, Vol. IV. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957.

    [61]

    M. E. Taylor, Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, 81, American Mathematical Society, Providence, RI, 2000.

    [62]

    J. Toland, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997), 136-150.doi: 10.1006/jfan.1996.3016.

    [63]

    E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. $S\veceMA$, 49 (2009), 33-44.

    [64]

    M. I. Vishik, Mixed boundary problems, Dokl. Akad. Nauk SSSR, 97 (1954), 193-196.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(404) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return