\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity of the homogeneous Monge-Ampère equation

Abstract Related Papers Cited by
  • In this paper, we study the regularity of convex solutions to the Dirichlet problem of the homogeneous Monge-Ampère equation $\det D^2 u=0$. We prove that if the domain is a strip region and the boundary functions are locally uniformly convex and $C^{k+2,\alpha}$ smooth, then the solution is $C^{k+2,\alpha}$ smooth up to boundary. By an example, we show the solution may fail to be $C^{2}$ smooth if boundary functions are not locally uniformly convex. Similar results have also been obtained for the Dirichlet problem on bounded convex domains.
    Mathematics Subject Classification: Primary: 35J96; Secondary: 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Benoist and J. B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal., 27 (1996), 1661-1679.doi: 10.1137/S0036141094265936.

    [2]

    L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of Monge-Ampère equations, Ann. Math., 131 (1990), 135-150.doi: 10.2307/1971510.

    [3]

    L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation, Revista Math. Iberoamericana, 2 (1986), 19-27.doi: 10.4171/RMI/23.

    [4]

    X. Chen, Complex Monge-Ampère and symplectic manifolds, J. Diff. Geom., 56 (2000), 189-234.

    [5]

    X. Chen and W. He, The space of volume forms, Int. Math. Res. Not. IMRN, (2011), 967-1009.doi: 10.1093/imrn/rnq099.

    [6]

    G. De Philippis and A. Figallli, Optimal regularity of the convex envelope, Trans. Amer. Math. Soc., 367 (2015), 4407-4422.doi: 10.1090/S0002-9947-2014-06306-X.

    [7]

    S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, 196 (1999), 13-33.

    [8]

    P. Guan, Regularity of a class of quasilinear degenerate elliptic equations, Advances in Math., 132 (1997), 24-45.doi: 10.1006/aima.1997.1677.

    [9]

    P. Guan and E. T. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane, Trans. Amer. Math. Soc., 361 (2009), 4581-4591.doi: 10.1090/S0002-9947-09-04640-6.

    [10]

    P. Guan, N. S. Trudinger and X.-J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations, Acta. Math., 182 (1999), 87-104.doi: 10.1007/BF02392824.

    [11]

    J. X. Hong, Dirichlet problems for general Monge-Ampère equations, Math. Z., 209 (1992), 289-306.doi: 10.1007/BF02570835.

    [12]

    J. X. Hong, G. Huang and W. Wang, Existence of global smooth solutions to Dirichlet problem for degenrate elliptic Monge-Ampère equations, Comm. PDE, 36 (2011), 635-656.doi: 10.1080/03605302.2010.514171.

    [13]

    B. Kirchheim and J. Kristensen, Differentiability of convex envelopes, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 725-728.doi: 10.1016/S0764-4442(01)02117-6.

    [14]

    A. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope, Trans. Amer. Math. Soc., 363 (2011), 5871-5886.doi: 10.1090/S0002-9947-2011-05240-2.

    [15]

    A. V. Pogorelov, The Minkowski Multidimensional Problem, J. Wiley, New York, 1978.

    [16]

    J. Rauch and B. A. Taylor, The Dirichlet problem for the multi-dimensional Monge-Ampère equation, Rocky Mountain J. Math., 7 (1977), 345-364.doi: 10.1216/RMJ-1977-7-2-345.

    [17]

    E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients, Mem. Amer. Math. Soc., 180 (2006), x+157 pp.doi: 10.1090/memo/0847.

    [18]

    O. Savin, Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation, J. Amer. Math. Soc., 26 (2013), 63-99.doi: 10.1090/S0894-0347-2012-00747-4.

    [19]

    O. Savin, Global $W^{2,p}$ estimates for the Monge-Ampère equation, Proc. Amer. Math. Soc., 141 (2013), 3573-3578.doi: 10.1090/S0002-9939-2013-11748-X.

    [20]

    O. Savin, A localisation theorem and boundary regularity for a class of degenerate Monge-Ampère equations, J. Differential Equations, 256 (2014), 327-388.doi: 10.1016/j.jde.2013.08.019.

    [21]

    S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math., 114 (1992), 495-550.doi: 10.2307/2374768.

    [22]

    C. Rios, E. T. Sawyer and R. L. Wheeden, A higher-dimensional partial Legendre transform, and regularity of degenerate Monge-Ampère equations, Adv. Math., 193 (2005), 373-415.doi: 10.1016/j.aim.2004.05.009.

    [23]

    C. Rios, E. T. Sawyer and R. L. Wheeden, Regularity of subelliptic Monge-Ampère equations, Advances in Math., 217 (2008), 967-1026.doi: 10.1016/j.aim.2007.07.004.

    [24]

    N. S. Trudinger and J. Urbas, On the second derivative estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc., 30 (1984), 321-334.doi: 10.1017/S0004972700002069.

    [25]

    N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations, Ann. of Math. (2), 167 (2008), 993-1028.doi: 10.4007/annals.2008.167.993.

    [26]

    N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications, Handbook of Geometric Analysis, International Press, 7 (2008), 467-524.

    [27]

    X. J. Wang, Some counterexamples to the regularity of Monge-Ampère equations, Proc. Amer. Math. Soc., 123 (1995), 841-845.doi: 10.2307/2160809.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return