• Previous Article
    Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials
  • DCDS Home
  • This Issue
  • Next Article
    Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations
December  2015, 35(12): 6069-6084. doi: 10.3934/dcds.2015.35.6069

Regularity of the homogeneous Monge-Ampère equation

1. 

Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 0200, Australia

2. 

Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200

Received  September 2013 Revised  February 2014 Published  May 2015

In this paper, we study the regularity of convex solutions to the Dirichlet problem of the homogeneous Monge-Ampère equation $\det D^2 u=0$. We prove that if the domain is a strip region and the boundary functions are locally uniformly convex and $C^{k+2,\alpha}$ smooth, then the solution is $C^{k+2,\alpha}$ smooth up to boundary. By an example, we show the solution may fail to be $C^{2}$ smooth if boundary functions are not locally uniformly convex. Similar results have also been obtained for the Dirichlet problem on bounded convex domains.
Citation: Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069
References:
[1]

J. Benoist and J. B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?,, SIAM J. Math. Anal., 27 (1996), 1661.  doi: 10.1137/S0036141094265936.  Google Scholar

[2]

L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of Monge-Ampère equations,, Ann. Math., 131 (1990), 135.  doi: 10.2307/1971510.  Google Scholar

[3]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation,, Revista Math. Iberoamericana, 2 (1986), 19.  doi: 10.4171/RMI/23.  Google Scholar

[4]

X. Chen, Complex Monge-Ampère and symplectic manifolds,, J. Diff. Geom., 56 (2000), 189.   Google Scholar

[5]

X. Chen and W. He, The space of volume forms,, Int. Math. Res. Not. IMRN, (2011), 967.  doi: 10.1093/imrn/rnq099.  Google Scholar

[6]

G. De Philippis and A. Figallli, Optimal regularity of the convex envelope,, Trans. Amer. Math. Soc., 367 (2015), 4407.  doi: 10.1090/S0002-9947-2014-06306-X.  Google Scholar

[7]

S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics,, Northern California Symplectic Geometry Seminar, 196 (1999), 13.   Google Scholar

[8]

P. Guan, Regularity of a class of quasilinear degenerate elliptic equations,, Advances in Math., 132 (1997), 24.  doi: 10.1006/aima.1997.1677.  Google Scholar

[9]

P. Guan and E. T. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane,, Trans. Amer. Math. Soc., 361 (2009), 4581.  doi: 10.1090/S0002-9947-09-04640-6.  Google Scholar

[10]

P. Guan, N. S. Trudinger and X.-J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations,, Acta. Math., 182 (1999), 87.  doi: 10.1007/BF02392824.  Google Scholar

[11]

J. X. Hong, Dirichlet problems for general Monge-Ampère equations,, Math. Z., 209 (1992), 289.  doi: 10.1007/BF02570835.  Google Scholar

[12]

J. X. Hong, G. Huang and W. Wang, Existence of global smooth solutions to Dirichlet problem for degenrate elliptic Monge-Ampère equations,, Comm. PDE, 36 (2011), 635.  doi: 10.1080/03605302.2010.514171.  Google Scholar

[13]

B. Kirchheim and J. Kristensen, Differentiability of convex envelopes,, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 725.  doi: 10.1016/S0764-4442(01)02117-6.  Google Scholar

[14]

A. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope,, Trans. Amer. Math. Soc., 363 (2011), 5871.  doi: 10.1090/S0002-9947-2011-05240-2.  Google Scholar

[15]

A. V. Pogorelov, The Minkowski Multidimensional Problem,, J. Wiley, (1978).   Google Scholar

[16]

J. Rauch and B. A. Taylor, The Dirichlet problem for the multi-dimensional Monge-Ampère equation,, Rocky Mountain J. Math., 7 (1977), 345.  doi: 10.1216/RMJ-1977-7-2-345.  Google Scholar

[17]

E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients,, Mem. Amer. Math. Soc., 180 (2006).  doi: 10.1090/memo/0847.  Google Scholar

[18]

O. Savin, Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation,, J. Amer. Math. Soc., 26 (2013), 63.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar

[19]

O. Savin, Global $W^{2,p}$ estimates for the Monge-Ampère equation,, Proc. Amer. Math. Soc., 141 (2013), 3573.  doi: 10.1090/S0002-9939-2013-11748-X.  Google Scholar

[20]

O. Savin, A localisation theorem and boundary regularity for a class of degenerate Monge-Ampère equations,, J. Differential Equations, 256 (2014), 327.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar

[21]

S. Semmes, Complex Monge-Ampère and symplectic manifolds,, Amer. J. Math., 114 (1992), 495.  doi: 10.2307/2374768.  Google Scholar

[22]

C. Rios, E. T. Sawyer and R. L. Wheeden, A higher-dimensional partial Legendre transform, and regularity of degenerate Monge-Ampère equations,, Adv. Math., 193 (2005), 373.  doi: 10.1016/j.aim.2004.05.009.  Google Scholar

[23]

C. Rios, E. T. Sawyer and R. L. Wheeden, Regularity of subelliptic Monge-Ampère equations,, Advances in Math., 217 (2008), 967.  doi: 10.1016/j.aim.2007.07.004.  Google Scholar

[24]

N. S. Trudinger and J. Urbas, On the second derivative estimates for equations of Monge-Ampère type,, Bull. Austral. Math. Soc., 30 (1984), 321.  doi: 10.1017/S0004972700002069.  Google Scholar

[25]

N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations,, Ann. of Math. (2), 167 (2008), 993.  doi: 10.4007/annals.2008.167.993.  Google Scholar

[26]

N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications,, Handbook of Geometric Analysis, 7 (2008), 467.   Google Scholar

[27]

X. J. Wang, Some counterexamples to the regularity of Monge-Ampère equations,, Proc. Amer. Math. Soc., 123 (1995), 841.  doi: 10.2307/2160809.  Google Scholar

show all references

References:
[1]

J. Benoist and J. B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?,, SIAM J. Math. Anal., 27 (1996), 1661.  doi: 10.1137/S0036141094265936.  Google Scholar

[2]

L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of Monge-Ampère equations,, Ann. Math., 131 (1990), 135.  doi: 10.2307/1971510.  Google Scholar

[3]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation,, Revista Math. Iberoamericana, 2 (1986), 19.  doi: 10.4171/RMI/23.  Google Scholar

[4]

X. Chen, Complex Monge-Ampère and symplectic manifolds,, J. Diff. Geom., 56 (2000), 189.   Google Scholar

[5]

X. Chen and W. He, The space of volume forms,, Int. Math. Res. Not. IMRN, (2011), 967.  doi: 10.1093/imrn/rnq099.  Google Scholar

[6]

G. De Philippis and A. Figallli, Optimal regularity of the convex envelope,, Trans. Amer. Math. Soc., 367 (2015), 4407.  doi: 10.1090/S0002-9947-2014-06306-X.  Google Scholar

[7]

S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics,, Northern California Symplectic Geometry Seminar, 196 (1999), 13.   Google Scholar

[8]

P. Guan, Regularity of a class of quasilinear degenerate elliptic equations,, Advances in Math., 132 (1997), 24.  doi: 10.1006/aima.1997.1677.  Google Scholar

[9]

P. Guan and E. T. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane,, Trans. Amer. Math. Soc., 361 (2009), 4581.  doi: 10.1090/S0002-9947-09-04640-6.  Google Scholar

[10]

P. Guan, N. S. Trudinger and X.-J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations,, Acta. Math., 182 (1999), 87.  doi: 10.1007/BF02392824.  Google Scholar

[11]

J. X. Hong, Dirichlet problems for general Monge-Ampère equations,, Math. Z., 209 (1992), 289.  doi: 10.1007/BF02570835.  Google Scholar

[12]

J. X. Hong, G. Huang and W. Wang, Existence of global smooth solutions to Dirichlet problem for degenrate elliptic Monge-Ampère equations,, Comm. PDE, 36 (2011), 635.  doi: 10.1080/03605302.2010.514171.  Google Scholar

[13]

B. Kirchheim and J. Kristensen, Differentiability of convex envelopes,, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 725.  doi: 10.1016/S0764-4442(01)02117-6.  Google Scholar

[14]

A. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope,, Trans. Amer. Math. Soc., 363 (2011), 5871.  doi: 10.1090/S0002-9947-2011-05240-2.  Google Scholar

[15]

A. V. Pogorelov, The Minkowski Multidimensional Problem,, J. Wiley, (1978).   Google Scholar

[16]

J. Rauch and B. A. Taylor, The Dirichlet problem for the multi-dimensional Monge-Ampère equation,, Rocky Mountain J. Math., 7 (1977), 345.  doi: 10.1216/RMJ-1977-7-2-345.  Google Scholar

[17]

E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients,, Mem. Amer. Math. Soc., 180 (2006).  doi: 10.1090/memo/0847.  Google Scholar

[18]

O. Savin, Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation,, J. Amer. Math. Soc., 26 (2013), 63.  doi: 10.1090/S0894-0347-2012-00747-4.  Google Scholar

[19]

O. Savin, Global $W^{2,p}$ estimates for the Monge-Ampère equation,, Proc. Amer. Math. Soc., 141 (2013), 3573.  doi: 10.1090/S0002-9939-2013-11748-X.  Google Scholar

[20]

O. Savin, A localisation theorem and boundary regularity for a class of degenerate Monge-Ampère equations,, J. Differential Equations, 256 (2014), 327.  doi: 10.1016/j.jde.2013.08.019.  Google Scholar

[21]

S. Semmes, Complex Monge-Ampère and symplectic manifolds,, Amer. J. Math., 114 (1992), 495.  doi: 10.2307/2374768.  Google Scholar

[22]

C. Rios, E. T. Sawyer and R. L. Wheeden, A higher-dimensional partial Legendre transform, and regularity of degenerate Monge-Ampère equations,, Adv. Math., 193 (2005), 373.  doi: 10.1016/j.aim.2004.05.009.  Google Scholar

[23]

C. Rios, E. T. Sawyer and R. L. Wheeden, Regularity of subelliptic Monge-Ampère equations,, Advances in Math., 217 (2008), 967.  doi: 10.1016/j.aim.2007.07.004.  Google Scholar

[24]

N. S. Trudinger and J. Urbas, On the second derivative estimates for equations of Monge-Ampère type,, Bull. Austral. Math. Soc., 30 (1984), 321.  doi: 10.1017/S0004972700002069.  Google Scholar

[25]

N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations,, Ann. of Math. (2), 167 (2008), 993.  doi: 10.4007/annals.2008.167.993.  Google Scholar

[26]

N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications,, Handbook of Geometric Analysis, 7 (2008), 467.   Google Scholar

[27]

X. J. Wang, Some counterexamples to the regularity of Monge-Ampère equations,, Proc. Amer. Math. Soc., 123 (1995), 841.  doi: 10.2307/2160809.  Google Scholar

[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[4]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[5]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[6]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[7]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[10]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[11]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[12]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[13]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[14]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[15]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[16]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[17]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[19]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]