-
Previous Article
Full characterization of optimal transport plans for concave costs
- DCDS Home
- This Issue
-
Next Article
Regularity of the homogeneous Monge-Ampère equation
Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials
1. | INdAM-COFUND Marie Curie Fellow, Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cédex, France |
2. | Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal |
3. | Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano |
References:
[1] |
A. Aftalion, B. Noris and C. Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation, Communications in Mathematical Physics, 336 (2015), 509-579.
doi: 10.1007/s00220-014-2281-9. |
[2] |
S. Alama, L. Bronsard and P. Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, J. Funct. Anal., 256 (2009), 1118-1136.
doi: 10.1016/j.jfa.2008.10.021. |
[3] |
A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4), 93 (1972), 231-246.
doi: 10.1007/BF02412022. |
[4] |
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2), 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020. |
[5] |
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1993. |
[6] |
T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[7] |
T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6. |
[8] |
H. Brezis, Semilinear equations in $R^N$ without condition at infinity, Appl. Math. Optim., 12 (1984), 271-282.
doi: 10.1007/BF01449045. |
[9] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. |
[10] |
S.-M. Chang, C.-S. Lin, T.-C. Lin and W.-W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Phys. D, 196 (2004), 341-361.
doi: 10.1016/j.physd.2004.06.002. |
[11] |
Z. Chen, C.-S. Lin and W. Zou, Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, J. Differential Equations, 255 (2013), 4289-4311.
doi: 10.1016/j.jde.2013.08.009. |
[12] |
E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009. |
[13] |
, DispersiveWiki project,, URL , ().
|
[14] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[15] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[16] |
N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 14 (2014), 115-136. |
[17] |
O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., 41 (1994), 151-173.
doi: 10.1307/mmj/1029004922. |
[18] |
T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[19] |
Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.
doi: 10.1007/s00220-008-0546-x. |
[20] |
L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006), 743-767.
doi: 10.1016/j.jde.2006.07.002. |
[21] |
L. A. Maia, E. Montefusco and B. Pellacci, Orbital stability property for coupled nonlinear Schrödinger equations, Adv. Nonlinear Stud., 10 (2010), 681-705. |
[22] |
N. V. Nguyen, On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger system, Commun. Math. Sci., 9 (2011), 997-1012.
doi: 10.4310/CMS.2011.v9.n4.a3. |
[23] |
N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Differential Equations, 16 (2011), 977-1000. |
[24] |
B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc., 138 (2010), 1681-1692.
doi: 10.1090/S0002-9939-10-10231-7. |
[25] |
B. Noris, H. Tavares, S. Terracini and G. Verzini, Convergence of minimax structures and continuation of critical points for singularly perturbed systems, J. Eur. Math. Soc. (JEMS), 14 (2012), 1245-1273.
doi: 10.4171/JEMS/332. |
[26] |
B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains,, , ().
|
[27] |
B. Noris and G. Verzini, A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems, J. Differential Equations, 254 (2013), 1529-1547.
doi: 10.1016/j.jde.2012.11.003. |
[28] |
M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal., 26 (1996), 933-939.
doi: 10.1016/0362-546X(94)00340-8. |
[29] |
J. Royo-Letelier, Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap, Calc. Var. Partial Differential Equations, 49 (2014), 103-124.
doi: 10.1007/s00526-012-0571-7. |
[30] |
J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Commun. Math. Phys., 91 (1983), 313-327.
doi: 10.1007/BF01208779. |
[31] |
B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$, Comm. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x. |
[32] |
N. Soave, On existence and phase separation of positive solutions to nonlinear elliptic systems modelling simultaneous cooperation and competition,, , ().
|
[33] |
H. Tavares and T. Weth, Existence and symmetry results for competing variational systems, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 715-740.
doi: 10.1007/s00030-012-0176-z. |
[34] |
H. Tavares and S. Terracini, Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 279-300.
doi: 10.1016/j.anihpc.2011.10.006. |
[35] |
S. Terracini and G. Verzini, Multipulse phases in $k$-mixtures of Bose-Einstein condensates, Arch. Ration. Mech. Anal., 194 (2009), 717-741.
doi: 10.1007/s00205-008-0172-y. |
[36] |
R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. |
[37] |
W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, Vol. 120, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1015-3. |
show all references
References:
[1] |
A. Aftalion, B. Noris and C. Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation, Communications in Mathematical Physics, 336 (2015), 509-579.
doi: 10.1007/s00220-014-2281-9. |
[2] |
S. Alama, L. Bronsard and P. Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model, J. Funct. Anal., 256 (2009), 1118-1136.
doi: 10.1016/j.jfa.2008.10.021. |
[3] |
A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4), 93 (1972), 231-246.
doi: 10.1007/BF02412022. |
[4] |
A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2), 75 (2007), 67-82.
doi: 10.1112/jlms/jdl020. |
[5] |
A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1993. |
[6] |
T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[7] |
T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2 (2007), 353-367.
doi: 10.1007/s11784-007-0033-6. |
[8] |
H. Brezis, Semilinear equations in $R^N$ without condition at infinity, Appl. Math. Optim., 12 (1984), 271-282.
doi: 10.1007/BF01449045. |
[9] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, 2003. |
[10] |
S.-M. Chang, C.-S. Lin, T.-C. Lin and W.-W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates, Phys. D, 196 (2004), 341-361.
doi: 10.1016/j.physd.2004.06.002. |
[11] |
Z. Chen, C.-S. Lin and W. Zou, Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, J. Differential Equations, 255 (2013), 4289-4311.
doi: 10.1016/j.jde.2013.08.009. |
[12] |
E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009. |
[13] |
, DispersiveWiki project,, URL , ().
|
[14] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[15] |
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., 94 (1990), 308-348.
doi: 10.1016/0022-1236(90)90016-E. |
[16] |
N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, Adv. Nonlinear Stud., 14 (2014), 115-136. |
[17] |
O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation, Michigan Math. J., 41 (1994), 151-173.
doi: 10.1307/mmj/1029004922. |
[18] |
T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x. |
[19] |
Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.
doi: 10.1007/s00220-008-0546-x. |
[20] |
L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006), 743-767.
doi: 10.1016/j.jde.2006.07.002. |
[21] |
L. A. Maia, E. Montefusco and B. Pellacci, Orbital stability property for coupled nonlinear Schrödinger equations, Adv. Nonlinear Stud., 10 (2010), 681-705. |
[22] |
N. V. Nguyen, On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger system, Commun. Math. Sci., 9 (2011), 997-1012.
doi: 10.4310/CMS.2011.v9.n4.a3. |
[23] |
N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system, Adv. Differential Equations, 16 (2011), 977-1000. |
[24] |
B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system, Proc. Amer. Math. Soc., 138 (2010), 1681-1692.
doi: 10.1090/S0002-9939-10-10231-7. |
[25] |
B. Noris, H. Tavares, S. Terracini and G. Verzini, Convergence of minimax structures and continuation of critical points for singularly perturbed systems, J. Eur. Math. Soc. (JEMS), 14 (2012), 1245-1273.
doi: 10.4171/JEMS/332. |
[26] |
B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains,, , ().
|
[27] |
B. Noris and G. Verzini, A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems, J. Differential Equations, 254 (2013), 1529-1547.
doi: 10.1016/j.jde.2012.11.003. |
[28] |
M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear Anal., 26 (1996), 933-939.
doi: 10.1016/0362-546X(94)00340-8. |
[29] |
J. Royo-Letelier, Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap, Calc. Var. Partial Differential Equations, 49 (2014), 103-124.
doi: 10.1007/s00526-012-0571-7. |
[30] |
J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations, Commun. Math. Phys., 91 (1983), 313-327.
doi: 10.1007/BF01208779. |
[31] |
B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$, Comm. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x. |
[32] |
N. Soave, On existence and phase separation of positive solutions to nonlinear elliptic systems modelling simultaneous cooperation and competition,, , ().
|
[33] |
H. Tavares and T. Weth, Existence and symmetry results for competing variational systems, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 715-740.
doi: 10.1007/s00030-012-0176-z. |
[34] |
H. Tavares and S. Terracini, Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 279-300.
doi: 10.1016/j.anihpc.2011.10.006. |
[35] |
S. Terracini and G. Verzini, Multipulse phases in $k$-mixtures of Bose-Einstein condensates, Arch. Ration. Mech. Anal., 194 (2009), 717-741.
doi: 10.1007/s00205-008-0172-y. |
[36] |
R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37 (2011), 203-223. |
[37] |
W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, Vol. 120, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-1015-3. |
[1] |
F. R. Pereira. Multiple solutions for a class of Ambrosetti-Prodi type problems for systems involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2008, 7 (2) : 355-372. doi: 10.3934/cpaa.2008.7.355 |
[2] |
Imene Bendahou, Zied Khemiri, Fethi Mahmoudi. On spikes concentrating on lines for a Neumann superlinear Ambrosetti-Prodi type problem. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2367-2391. doi: 10.3934/dcds.2020118 |
[3] |
Elisa Sovrano. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 345-355. doi: 10.3934/dcdss.2018019 |
[4] |
Norman E. Dancer. On the converse problem for the Gross-Pitaevskii equations with a large parameter. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2481-2493. doi: 10.3934/dcds.2014.34.2481 |
[5] |
Thomas Chen, Nataša Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 715-739. doi: 10.3934/dcds.2010.27.715 |
[6] |
Yue Zhang, Jian Zhang. Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022007 |
[7] |
Maria Rosaria Lancia, Alejandro Vélez-Santiago, Paola Vernole. A quasi-linear nonlocal Venttsel' problem of Ambrosetti–Prodi type on fractal domains. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4487-4518. doi: 10.3934/dcds.2019184 |
[8] |
Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214 |
[9] |
E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120 |
[10] |
Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic and Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048 |
[11] |
Philipp Bader, Sergio Blanes, Fernando Casas, Mechthild Thalhammer. Efficient time integration methods for Gross-Pitaevskii equations with rotation term. Journal of Computational Dynamics, 2019, 6 (2) : 147-169. doi: 10.3934/jcd.2019008 |
[12] |
Ko-Shin Chen, Peter Sternberg. Dynamics of Ginzburg-Landau and Gross-Pitaevskii vortices on manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1905-1931. doi: 10.3934/dcds.2014.34.1905 |
[13] |
Dong Deng, Ruikuan Liu. Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3175-3193. doi: 10.3934/dcdsb.2018306 |
[14] |
Georgy L. Alfimov, Pavel P. Kizin, Dmitry A. Zezyulin. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1207-1229. doi: 10.3934/dcdsb.2017059 |
[15] |
Roy H. Goodman, Jeremy L. Marzuola, Michael I. Weinstein. Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 225-246. doi: 10.3934/dcds.2015.35.225 |
[16] |
Yujin Guo, Xiaoyu Zeng, Huan-Song Zhou. Blow-up solutions for two coupled Gross-Pitaevskii equations with attractive interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3749-3786. doi: 10.3934/dcds.2017159 |
[17] |
Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505 |
[18] |
Shuai Li, Jingjing Yan, Xincai Zhu. Constraint minimizers of perturbed gross-pitaevskii energy functionals in $\mathbb{R}^N$. Communications on Pure and Applied Analysis, 2019, 18 (1) : 65-81. doi: 10.3934/cpaa.2019005 |
[19] |
Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022 |
[20] |
Mats Gyllenberg, Yi Wang. Periodic tridiagonal systems modeling competitive-cooperative ecological interactions. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 289-298. doi: 10.3934/dcdsb.2005.5.289 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]