December  2015, 35(12): 6085-6112. doi: 10.3934/dcds.2015.35.6085

Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials

1. 

INdAM-COFUND Marie Curie Fellow, Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cédex, France

2. 

Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

3. 

Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano

Received  May 2014 Published  May 2015

For the cubic Schrödinger system with trapping potentials in $\mathbb{R}^N$, $N\leq3$, or in bounded domains, we investigate the existence and the orbital stability of standing waves having components with prescribed $L^2$-mass. We provide a variational characterization of such solutions, which gives information on the stability through a condition of Grillakis-Shatah-Strauss type. As an application, we show existence of conditionally orbitally stable solitary waves when: a) the masses are small, for almost every scattering lengths, and b) in the defocusing, weakly interacting case, for any masses.
Citation: Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085
References:
[1]

Communications in Mathematical Physics, 336 (2015), 509-579. doi: 10.1007/s00220-014-2281-9.  Google Scholar

[2]

J. Funct. Anal., 256 (2009), 1118-1136. doi: 10.1016/j.jfa.2008.10.021.  Google Scholar

[3]

Ann. Mat. Pura Appl. (4), 93 (1972), 231-246. doi: 10.1007/BF02412022.  Google Scholar

[4]

J. Lond. Math. Soc. (2), 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.  Google Scholar

[5]

Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1993.  Google Scholar

[6]

Calc. Var. Partial Differential Equations, 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y.  Google Scholar

[7]

J. Fixed Point Theory Appl., 2 (2007), 353-367. doi: 10.1007/s11784-007-0033-6.  Google Scholar

[8]

Appl. Math. Optim., 12 (1984), 271-282. doi: 10.1007/BF01449045.  Google Scholar

[9]

Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, 2003.  Google Scholar

[10]

Phys. D, 196 (2004), 341-361. doi: 10.1016/j.physd.2004.06.002.  Google Scholar

[11]

J. Differential Equations, 255 (2013), 4289-4311. doi: 10.1016/j.jde.2013.08.009.  Google Scholar

[12]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[13]

, DispersiveWiki project,, URL , ().   Google Scholar

[14]

J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[15]

J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[16]

Adv. Nonlinear Stud., 14 (2014), 115-136.  Google Scholar

[17]

Michigan Math. J., 41 (1994), 151-173. doi: 10.1307/mmj/1029004922.  Google Scholar

[18]

Comm. Math. Phys., 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.  Google Scholar

[19]

Comm. Math. Phys., 282 (2008), 721-731. doi: 10.1007/s00220-008-0546-x.  Google Scholar

[20]

J. Differential Equations, 229 (2006), 743-767. doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[21]

Adv. Nonlinear Stud., 10 (2010), 681-705.  Google Scholar

[22]

Commun. Math. Sci., 9 (2011), 997-1012. doi: 10.4310/CMS.2011.v9.n4.a3.  Google Scholar

[23]

Adv. Differential Equations, 16 (2011), 977-1000.  Google Scholar

[24]

Proc. Amer. Math. Soc., 138 (2010), 1681-1692. doi: 10.1090/S0002-9939-10-10231-7.  Google Scholar

[25]

J. Eur. Math. Soc. (JEMS), 14 (2012), 1245-1273. doi: 10.4171/JEMS/332.  Google Scholar

[26]

B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains,, , ().   Google Scholar

[27]

J. Differential Equations, 254 (2013), 1529-1547. doi: 10.1016/j.jde.2012.11.003.  Google Scholar

[28]

Nonlinear Anal., 26 (1996), 933-939. doi: 10.1016/0362-546X(94)00340-8.  Google Scholar

[29]

Calc. Var. Partial Differential Equations, 49 (2014), 103-124. doi: 10.1007/s00526-012-0571-7.  Google Scholar

[30]

Commun. Math. Phys., 91 (1983), 313-327. doi: 10.1007/BF01208779.  Google Scholar

[31]

Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x.  Google Scholar

[32]

N. Soave, On existence and phase separation of positive solutions to nonlinear elliptic systems modelling simultaneous cooperation and competition,, , ().   Google Scholar

[33]

NoDEA Nonlinear Differential Equations Appl., 20 (2013), 715-740. doi: 10.1007/s00030-012-0176-z.  Google Scholar

[34]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 279-300. doi: 10.1016/j.anihpc.2011.10.006.  Google Scholar

[35]

Arch. Ration. Mech. Anal., 194 (2009), 717-741. doi: 10.1007/s00205-008-0172-y.  Google Scholar

[36]

Topol. Methods Nonlinear Anal., 37 (2011), 203-223.  Google Scholar

[37]

Graduate Texts in Mathematics, Vol. 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

Communications in Mathematical Physics, 336 (2015), 509-579. doi: 10.1007/s00220-014-2281-9.  Google Scholar

[2]

J. Funct. Anal., 256 (2009), 1118-1136. doi: 10.1016/j.jfa.2008.10.021.  Google Scholar

[3]

Ann. Mat. Pura Appl. (4), 93 (1972), 231-246. doi: 10.1007/BF02412022.  Google Scholar

[4]

J. Lond. Math. Soc. (2), 75 (2007), 67-82. doi: 10.1112/jlms/jdl020.  Google Scholar

[5]

Cambridge Studies in Advanced Mathematics, 34, Cambridge University Press, Cambridge, 1993.  Google Scholar

[6]

Calc. Var. Partial Differential Equations, 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y.  Google Scholar

[7]

J. Fixed Point Theory Appl., 2 (2007), 353-367. doi: 10.1007/s11784-007-0033-6.  Google Scholar

[8]

Appl. Math. Optim., 12 (1984), 271-282. doi: 10.1007/BF01449045.  Google Scholar

[9]

Courant Lecture Notes in Mathematics, 10, New York University Courant Institute of Mathematical Sciences, New York, 2003.  Google Scholar

[10]

Phys. D, 196 (2004), 341-361. doi: 10.1016/j.physd.2004.06.002.  Google Scholar

[11]

J. Differential Equations, 255 (2013), 4289-4311. doi: 10.1016/j.jde.2013.08.009.  Google Scholar

[12]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[13]

, DispersiveWiki project,, URL , ().   Google Scholar

[14]

J. Funct. Anal., 74 (1987), 160-197. doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[15]

J. Funct. Anal., 94 (1990), 308-348. doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[16]

Adv. Nonlinear Stud., 14 (2014), 115-136.  Google Scholar

[17]

Michigan Math. J., 41 (1994), 151-173. doi: 10.1307/mmj/1029004922.  Google Scholar

[18]

Comm. Math. Phys., 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x.  Google Scholar

[19]

Comm. Math. Phys., 282 (2008), 721-731. doi: 10.1007/s00220-008-0546-x.  Google Scholar

[20]

J. Differential Equations, 229 (2006), 743-767. doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[21]

Adv. Nonlinear Stud., 10 (2010), 681-705.  Google Scholar

[22]

Commun. Math. Sci., 9 (2011), 997-1012. doi: 10.4310/CMS.2011.v9.n4.a3.  Google Scholar

[23]

Adv. Differential Equations, 16 (2011), 977-1000.  Google Scholar

[24]

Proc. Amer. Math. Soc., 138 (2010), 1681-1692. doi: 10.1090/S0002-9939-10-10231-7.  Google Scholar

[25]

J. Eur. Math. Soc. (JEMS), 14 (2012), 1245-1273. doi: 10.4171/JEMS/332.  Google Scholar

[26]

B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains,, , ().   Google Scholar

[27]

J. Differential Equations, 254 (2013), 1529-1547. doi: 10.1016/j.jde.2012.11.003.  Google Scholar

[28]

Nonlinear Anal., 26 (1996), 933-939. doi: 10.1016/0362-546X(94)00340-8.  Google Scholar

[29]

Calc. Var. Partial Differential Equations, 49 (2014), 103-124. doi: 10.1007/s00526-012-0571-7.  Google Scholar

[30]

Commun. Math. Phys., 91 (1983), 313-327. doi: 10.1007/BF01208779.  Google Scholar

[31]

Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x.  Google Scholar

[32]

N. Soave, On existence and phase separation of positive solutions to nonlinear elliptic systems modelling simultaneous cooperation and competition,, , ().   Google Scholar

[33]

NoDEA Nonlinear Differential Equations Appl., 20 (2013), 715-740. doi: 10.1007/s00030-012-0176-z.  Google Scholar

[34]

Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 279-300. doi: 10.1016/j.anihpc.2011.10.006.  Google Scholar

[35]

Arch. Ration. Mech. Anal., 194 (2009), 717-741. doi: 10.1007/s00205-008-0172-y.  Google Scholar

[36]

Topol. Methods Nonlinear Anal., 37 (2011), 203-223.  Google Scholar

[37]

Graduate Texts in Mathematics, Vol. 120, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[2]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[3]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[4]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[5]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[6]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[7]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[8]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[9]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[10]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[11]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[12]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[13]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[14]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[15]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[16]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[17]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[18]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (17)

[Back to Top]