-
Previous Article
The Hessian Sobolev inequality and its extensions
- DCDS Home
- This Issue
-
Next Article
Complexity and regularity of maximal energy domains for the wave equation with fixed initial data
A note on higher regularity boundary Harnack inequality
1. | Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York, NY 10027, United States |
2. | Department of Mathematics, Columbia University, New York, NY 10027, United States |
References:
[1] |
R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200.
doi: 10.1215/S0012-7094-91-06408-2. |
[2] |
L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.
doi: 10.1007/BF02498216. |
[3] |
L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30 (1981), 621-640.
doi: 10.1512/iumj.1981.30.30049. |
[4] |
D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries, submitted, arXiv:1402.1098, 2014. |
[5] |
F. Ferrari, On boundary behavior of harmonic functions in Hölder domains, J. Fourier Anal. Appl., 4 (1998), 447-461.
doi: 10.1007/BF02498219. |
[6] |
R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132 (1968), 307-322.
doi: 10.1090/S0002-9947-1968-0226044-7. |
[7] |
D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., 46 (1982), 80-147.
doi: 10.1016/0001-8708(82)90055-X. |
[8] |
D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math., 34 (1978), 86-119 (1979).
doi: 10.1007/BF02790009. |
show all references
References:
[1] |
R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200.
doi: 10.1215/S0012-7094-91-06408-2. |
[2] |
L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.
doi: 10.1007/BF02498216. |
[3] |
L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30 (1981), 621-640.
doi: 10.1512/iumj.1981.30.30049. |
[4] |
D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries, submitted, arXiv:1402.1098, 2014. |
[5] |
F. Ferrari, On boundary behavior of harmonic functions in Hölder domains, J. Fourier Anal. Appl., 4 (1998), 447-461.
doi: 10.1007/BF02498219. |
[6] |
R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132 (1968), 307-322.
doi: 10.1090/S0002-9947-1968-0226044-7. |
[7] |
D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., 46 (1982), 80-147.
doi: 10.1016/0001-8708(82)90055-X. |
[8] |
D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math., 34 (1978), 86-119 (1979).
doi: 10.1007/BF02790009. |
[1] |
Teo Kukuljan. Higher order parabolic boundary Harnack inequality in C1 and Ck, α domains. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2667-2698. doi: 10.3934/dcds.2021207 |
[2] |
Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261 |
[3] |
Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721 |
[4] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1363-1383. doi: 10.3934/cpaa.2021024 |
[5] |
Paolo Piersanti. On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 1011-1037. doi: 10.3934/dcds.2021145 |
[6] |
Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093 |
[7] |
Fatma Gamze Düzgün, Ugo Gianazza, Vincenzo Vespri. $1$-dimensional Harnack estimates. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 675-685. doi: 10.3934/dcdss.2016021 |
[8] |
Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425 |
[9] |
Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022017 |
[10] |
Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015 |
[11] |
Shiping Cao, Hua Qiu. Boundary value problems for harmonic functions on domains in Sierpinski gaskets. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1147-1179. doi: 10.3934/cpaa.2020054 |
[12] |
Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 |
[13] |
Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 |
[14] |
Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 |
[15] |
Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure and Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225 |
[16] |
Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609 |
[17] |
Lekbir Afraites. A new coupled complex boundary method (CCBM) for an inverse obstacle problem. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 23-40. doi: 10.3934/dcdss.2021069 |
[18] |
Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557 |
[19] |
Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555 |
[20] |
Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]