December  2015, 35(12): 6155-6163. doi: 10.3934/dcds.2015.35.6155

A note on higher regularity boundary Harnack inequality

1. 

Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York, NY 10027, United States

2. 

Department of Mathematics, Columbia University, New York, NY 10027, United States

Received  March 2014 Published  May 2015

We show that the quotient of a harmonic function and a positive harmonic function, both vanishing on the boundary of a $C^{k,\alpha}$ domain is of class $C^{k,\alpha}$ up to the boundary.
Citation: Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155
References:
[1]

R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200. doi: 10.1215/S0012-7094-91-06408-2.  Google Scholar

[2]

L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402. doi: 10.1007/BF02498216.  Google Scholar

[3]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30 (1981), 621-640. doi: 10.1512/iumj.1981.30.30049.  Google Scholar

[4]

D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries, submitted, arXiv:1402.1098, 2014. Google Scholar

[5]

F. Ferrari, On boundary behavior of harmonic functions in Hölder domains, J. Fourier Anal. Appl., 4 (1998), 447-461. doi: 10.1007/BF02498219.  Google Scholar

[6]

R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132 (1968), 307-322. doi: 10.1090/S0002-9947-1968-0226044-7.  Google Scholar

[7]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., 46 (1982), 80-147. doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[8]

D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math., 34 (1978), 86-119 (1979). doi: 10.1007/BF02790009.  Google Scholar

show all references

References:
[1]

R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle, Duke Math. J., 64 (1991), 195-200. doi: 10.1215/S0012-7094-91-06408-2.  Google Scholar

[2]

L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402. doi: 10.1007/BF02498216.  Google Scholar

[3]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form, Indiana Math. J., 30 (1981), 621-640. doi: 10.1512/iumj.1981.30.30049.  Google Scholar

[4]

D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries, submitted, arXiv:1402.1098, 2014. Google Scholar

[5]

F. Ferrari, On boundary behavior of harmonic functions in Hölder domains, J. Fourier Anal. Appl., 4 (1998), 447-461. doi: 10.1007/BF02498219.  Google Scholar

[6]

R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc., 132 (1968), 307-322. doi: 10.1090/S0002-9947-1968-0226044-7.  Google Scholar

[7]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., 46 (1982), 80-147. doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[8]

D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math., 34 (1978), 86-119 (1979). doi: 10.1007/BF02790009.  Google Scholar

[1]

Wendong Wang, Liqun Zhang. The $C^{\alpha}$ regularity of weak solutions of ultraparabolic equations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1261-1275. doi: 10.3934/dcds.2011.29.1261

[2]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1363-1383. doi: 10.3934/cpaa.2021024

[4]

Paolo Piersanti. On the improved interior regularity of a boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021145

[5]

Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093

[6]

Fatma Gamze Düzgün, Ugo Gianazza, Vincenzo Vespri. $1$-dimensional Harnack estimates. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 675-685. doi: 10.3934/dcdss.2016021

[7]

Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425

[8]

Fengping Yao, Shulin Zhou. Interior $C^{1,\alpha}$ regularity of weak solutions for a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1635-1649. doi: 10.3934/dcdsb.2016015

[9]

Shiping Cao, Hua Qiu. Boundary value problems for harmonic functions on domains in Sierpinski gaskets. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1147-1179. doi: 10.3934/cpaa.2020054

[10]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[11]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[12]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[13]

Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225

[14]

Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609

[15]

Lekbir Afraites. A new coupled complex boundary method (CCBM) for an inverse obstacle problem. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021069

[16]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[17]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

[18]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[19]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks & Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[20]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]