December  2015, 35(12): 6155-6163. doi: 10.3934/dcds.2015.35.6155

A note on higher regularity boundary Harnack inequality

1. 

Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York, NY 10027, United States

2. 

Department of Mathematics, Columbia University, New York, NY 10027, United States

Received  March 2014 Published  May 2015

We show that the quotient of a harmonic function and a positive harmonic function, both vanishing on the boundary of a $C^{k,\alpha}$ domain is of class $C^{k,\alpha}$ up to the boundary.
Citation: Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155
References:
[1]

R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle,, Duke Math. J., 64 (1991), 195.  doi: 10.1215/S0012-7094-91-06408-2.  Google Scholar

[2]

L. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[3]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form,, Indiana Math. J., 30 (1981), 621.  doi: 10.1512/iumj.1981.30.30049.  Google Scholar

[4]

D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries,, submitted, (2014).   Google Scholar

[5]

F. Ferrari, On boundary behavior of harmonic functions in Hölder domains,, J. Fourier Anal. Appl., 4 (1998), 447.  doi: 10.1007/BF02498219.  Google Scholar

[6]

R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions,, Trans. Amer. Math. Soc., 132 (1968), 307.  doi: 10.1090/S0002-9947-1968-0226044-7.  Google Scholar

[7]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains,, Adv. Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[8]

D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems,, J. Analyse Math., 34 (1978), 86.  doi: 10.1007/BF02790009.  Google Scholar

show all references

References:
[1]

R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle,, Duke Math. J., 64 (1991), 195.  doi: 10.1215/S0012-7094-91-06408-2.  Google Scholar

[2]

L. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[3]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form,, Indiana Math. J., 30 (1981), 621.  doi: 10.1512/iumj.1981.30.30049.  Google Scholar

[4]

D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries,, submitted, (2014).   Google Scholar

[5]

F. Ferrari, On boundary behavior of harmonic functions in Hölder domains,, J. Fourier Anal. Appl., 4 (1998), 447.  doi: 10.1007/BF02498219.  Google Scholar

[6]

R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions,, Trans. Amer. Math. Soc., 132 (1968), 307.  doi: 10.1090/S0002-9947-1968-0226044-7.  Google Scholar

[7]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains,, Adv. Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[8]

D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems,, J. Analyse Math., 34 (1978), 86.  doi: 10.1007/BF02790009.  Google Scholar

[1]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[8]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]