Citation: |
[1] |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, Berlin, 1996.doi: 10.1007/978-3-662-03282-4. |
[2] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261-301.doi: 10.1007/BF02392544. |
[3] |
C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc., 9 (1983), 129-206.doi: 10.1090/S0273-0979-1983-15154-6. |
[4] |
F. Ferrari, B. Franchi and I. Verbitsky, Hessian inequalities and the fractional Laplacian, J. reine angew. Math., 667 (2012), 133-148.doi: 10.1515/CRELLE.2011.116. |
[5] |
F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities, J. Diff. Eqs., 253 (2012), 244-272.doi: 10.1016/j.jde.2012.03.024. |
[6] |
L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble), 33 (1983), 161-187.doi: 10.5802/aif.944. |
[7] |
T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172 (1994), 137-161.doi: 10.1007/BF02392793. |
[8] |
D. A. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J., 111 (2002), 1-49.doi: 10.1215/S0012-7094-02-11111-9. |
[9] |
V. G. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations, 2nd augmented ed., Springer, Berlin, 2011.doi: 10.1007/978-3-642-15564-2. |
[10] |
N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. Math., 168 (2008), 859-914.doi: 10.4007/annals.2008.168.859. |
[11] |
N. C. Phuc and I. E. Verbitsky, Singular quasilinear and Hessian equations and inequalities, J. Funct. Anal., 256 (2009), 1875-1906.doi: 10.1016/j.jfa.2009.01.012. |
[12] |
W. Sheng, N. S. Trudinger and X. J. Wang, The Yamabe problem for higher order curvatures, J. Diff. Geom., 77 (2007), 515-553. |
[13] |
N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.doi: 10.1007/BF02393303. |
[14] |
N. S. Trudinger, On new isoperimetric inequalities and symmetrization, J. reine angew. Math., 488 (1997), 203-220.doi: 10.1515/crll.1997.488.203. |
[15] |
N. S. Trudinger, Weak solutions of Hessian equations, Comm. PDE, 22 (1997), 1251-1261.doi: 10.1080/03605309708821299. |
[16] |
N. S. Trudinger and X. J. Wang, A Poincaré type inequality for Hessian integrals, Calc. Var. PDE, 6 (1998), 315-328.doi: 10.1007/s005260050093. |
[17] |
N. S. Trudinger and X. J. Wang, Hessian measures I, Topol. Meth. Nonlin. Anal., 10 (1997), 225-239. |
[18] |
N. S. Trudinger and X. J. Wang, Hessian measures II, Ann. Math., 150 (1999), 579-604.doi: 10.2307/121089. |
[19] |
N. S. Trudinger and X. J. Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math., 124 (2002), 369-410.doi: 10.1353/ajm.2002.0012. |
[20] |
K. Tso, On symmetrization and Hessian equations, J. Anal. Math., 52 (1989), 94-106.doi: 10.1007/BF02820473. |
[21] |
K. Tso, On a real Monge-Ampère functional, Invent. Math., 101 (1990), 425-448.doi: 10.1007/BF01231510. |
[22] |
I. E. Verbitsky, Nonlinear potentials and trace inequalities, in The Maz'ya Anniversary Collection, Vol. 2, Operator Theory Adv. Appl., 110, Birkhäuser, 1999, 323-343.doi: 10.1007/978-3-0348-8672-7_18. |
[23] |
I. E. Verbitsky, Hessian Sobolev and Poincaré inequalities, Oberwolfach Reports, 36 (2011), 2077-2079.doi: 10.4171/OWR/2011/36. |
[24] |
X. J. Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J., 43 (1994), 25-54.doi: 10.1512/iumj.1994.43.43002. |