Citation: |
[1] |
O. Arino, E. Sánchez, R. Bravo de la Parra and P. Auger, A singular perturbation in an age-structured population model, SIAM Journal on Applied Mathematics, 60 (1999), 408-436. |
[2] |
O. Arino, E. Sánchez and R. Bravo De La Parra, A model of an age-structured population in a multipatch environment, Math. Compt. Modelling, 27 (1998), 137-150.doi: 10.1016/S0895-7177(98)00013-2. |
[3] |
N. T. J. Bailey, The Elements of Stochastic Processes, Wiley, New York, 1964. |
[4] |
J. Banasiak and L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer, London, 2006. |
[5] |
J. Banasiak, Asymptotic analysis of singularly perturbed dynamical systems, in Multiscale Problems in Biomathematics, Physics and Mechanics: Modelling, Analysis and Numerics (eds A. Abdulle, J. Banasiak, A. Damlamian and M. Sango), GAKUTO Internat. Ser. Math. Sci. Appl. 31, Gakkotosho, Tokyo, 2009, 221-255. |
[6] |
J. Banasiak and A. Bobrowski, Interplay between degenerate convergence of semigroups and asymptotic analysis, J. Evol. Equ., 9 (2009), 293-314.doi: 10.1007/s00028-009-0009-7. |
[7] |
J. Banasiak, A. Goswami and S. Shindin, Aggregation in age and space structured population models: an asymptotic analysis approach, J. Evol. Equ., 11 (2011), 121-154.doi: 10.1007/s00028-010-0086-7. |
[8] |
J. Banasiak and P. Namayanja, Relative entropy and discrete Poincaré inequalities for reducible matrices, Appl. Math. Lett., 25 (2012), 2193-2197.doi: 10.1016/j.aml.2012.06.001. |
[9] |
J. Banasiak, A. Goswami and S. Shindin, Singularly perturbed population models with reducible migration matrix. 2. Asymptotic analysis and numerical simulations, Mediterr. J. Math., 11 (2014), 533-559.doi: 10.1007/s00009-013-0319-4. |
[10] |
A. Bobrowski, Convergence of One-Parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, Cambridge University Press, Cambridge, to appear. |
[11] |
A. Bobrowski, A note on convergence of semigroups, Ann. Polon. Math., 69 (1998), 107-127. |
[12] |
A. Bobrowski, Degenerate convergence of semigroups, Semigroup Forum, 49 (1994), 303-327.doi: 10.1007/BF02573493. |
[13] |
A. Bobrowski, Functional Analysis for Probability and Stochastic Processes, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9780511614583. |
[14] |
R. Bravo de la Parra, O. Arino, E. Sánchez and P. Auger, A model for an age-structured population with two time scales, Math. Comput. Modelling, 31 (2000), 17-26.doi: 10.1016/S0895-7177(00)00017-0. |
[15] |
H. Caswell, Matrix Population Models: Construction, Analysis and Interpretation, 2nd edition, Sinauer Associates, Inc., Sunderland, 2001. |
[16] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 2000. |
[17] |
S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986.doi: 10.1002/9780470316658. |
[18] |
F. R. Gantmacher, Applications of the Theory of Matrices, Interscience Publishers, New York, 1959. |
[19] |
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, 31, AMS, Providence, 1957. |
[20] |
H. Inaba, A semigroup approach to the strong ergodic theorem of the multi state stable population process, Mathematical Population Studies, 1 (1988), 49-77.doi: 10.1080/08898488809525260. |
[21] |
T. G. Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Funct. Anal., 12 (1973), 55-67.doi: 10.1016/0022-1236(73)90089-X. |
[22] |
M. Lisi and S. Totaro, The Chapman-Enskog procedure for an age-structured population model: initial, boundary and corner layer corrections, Math. Biosci., 196 (2005), 153-186.doi: 10.1016/j.mbs.2005.02.006. |
[23] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.doi: 10.1137/1.9780898719512. |
[24] |
J. R. Mika and J. Banasiak, Singularly Perturbed Evolution Equations with Applications in Kinetic Theory, World Sci., Singapore, 1995.doi: 10.1142/9789812831248. |
[25] |
E. Seneta, Nonnegative Matrices and Markov Chains, 2nd edition, Springer Series in Statistics, Springer-Verlag, New York, 1981.doi: 10.1007/0-387-32792-4. |
[26] |
M. Sova, Convergence d'opérations lineaires non bornées, Rev. Roum. Math. Pures et App., 12 (1967), 373-389. |
[27] |
G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York, 1985. |