February  2015, 35(2): 637-652. doi: 10.3934/dcds.2015.35.637

Classical operators on the Hörmander algebras

1. 

Facultad de Magisterio, Universitat de València, Avda. Tarongers, 4, E-46022-Valencia, Spain

2. 

Instituto Universitario de Matemática Pura y Aplicada, IUMPA Universitat Politència, Camino de Vera, s/n., E-46022 Valencia, Spain

3. 

Departamento de Análisis Matemático, Universitat de València, C/ Dr. Moliner, 50, E-46100-Burjassot, Spain

Received  July 2013 Revised  October 2013 Published  September 2014

We study the integration operator, the differentiation operator and more general differential operators on radial Fréchet or (LB) Hörmander algebras of entire functions. We analyze when these operators are power bounded, hypercyclic and (uniformly) mean ergodic.
Citation: María José Beltrán, José Bonet, Carmen Fernández. Classical operators on the Hörmander algebras. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 637-652. doi: 10.3934/dcds.2015.35.637
References:
[1]

A. Albanese, J. Bonet and W. J. Ricker, Mean ergodic operators in Fréchet spaces,, Ann. Acad. Sci. Fenn. Math., 34 (2009), 401. Google Scholar

[2]

A. Albanese, J. Bonet and W. J. Ricker, On mean ergodic operators,, Oper. Theory Adv. Appl., 201 (2010), 1. Google Scholar

[3]

F. Bayart and E. Matheron, Dynamics of Linear Operators,, Cambridge Tracts in Mathematics 179, (2009). doi: 10.1017/CBO9780511581113. Google Scholar

[4]

M. J. Beltrán, Dynamics of differentiation and integration operators on weighted spaces of entire functions,, Studia Math., 221 (2014), 35. doi: 10.4064/sm221-1-3. Google Scholar

[5]

M. J. Beltrán, J. Bonet and C. Fernández, Classical operators on weighted Banach spaces of entire functions,, Proc. Amer. Math. Soc., 141 (2013), 4293. doi: 10.1090/S0002-9939-2013-11685-0. Google Scholar

[6]

C. Berenstein and R. Gay, Complex Analysis and Special Topics in Harmonic Analysis,, Springer, (1995). doi: 10.1007/978-1-4613-8445-8. Google Scholar

[7]

C. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable,, Adv. in Math., 33 (1979), 109. doi: 10.1016/S0001-8708(79)80002-X. Google Scholar

[8]

L. Bernal-González and A. Bonilla, Exponential type of hypercyclic entire functions,, Arch. Math. (Basel), 78 (2002), 283. doi: 10.1007/s00013-002-8248-7. Google Scholar

[9]

K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions,, Stud. Math., 127 (1998), 137. Google Scholar

[10]

K. D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits,, Trans. Am. Math. Soc., 272 (1982), 107. doi: 10.1090/S0002-9947-1982-0656483-9. Google Scholar

[11]

K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions,, J. Austral. Math. Soc. Ser. A, 54 (1993), 70. doi: 10.1017/S1446788700036983. Google Scholar

[12]

C. Blair and L. A. Rubel, A triply universal entire function,, Enseign. Math. (2), 30 (1984), 269. Google Scholar

[13]

J. Bonet, Hypercyclic and chaotic convolution operators,, J. London Math. Soc., 62 (2000), 253. doi: 10.1112/S0024610700001174. Google Scholar

[14]

J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions,, Math. Z., 261 (2009), 649. doi: 10.1007/s00209-008-0347-0. Google Scholar

[15]

J. Bonet and A. Bonilla, Chaos of the differentiation operator on weighted Banach spaces of entire functions,, Complex Anal. Oper. Theory, 7 (2013), 33. doi: 10.1007/s11785-011-0134-5. Google Scholar

[16]

R. Braun, Weighted algebras of entire functions in which each closed ideal admits two algebraic generators,, Michigan Math. J., 34 (1987), 441. doi: 10.1307/mmj/1029003623. Google Scholar

[17]

K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts,, Studia Math., 139 (2000), 47. Google Scholar

[18]

K. G. Grosse-Erdmann and A. Peris, Linear Chaos,, Springer, (2011). doi: 10.1007/978-1-4471-2170-1. Google Scholar

[19]

A. Harutyunyan and W. Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions,, Studia Math., 184 (2008), 233. doi: 10.4064/sm184-3-3. Google Scholar

[20]

W. Lusky, On the Fourier series of unbounded harmonic functions,, J. London Math. Soc., 61 (2000), 568. doi: 10.1112/S0024610799008443. Google Scholar

[21]

F. Martínez-Giménez and A. Peris, Chaos for backward shift operators,, Int. J. Bifurcation and Chaos, 12 (2002), 1703. doi: 10.1142/S0218127402005418. Google Scholar

[22]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229. doi: 10.1016/0022-1236(91)90078-J. Google Scholar

[23]

R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals,, J. Reine Angew. Math., 363 (1985), 59. doi: 10.1515/crll.1985.363.59. Google Scholar

[24]

R. Meise and B. A. Taylor, Sequence space representations for (FN)-algebras of entire functions modulo closed ideals,, Studia Math., 85 (1987), 203. Google Scholar

[25]

R. Meise and D. Vogt, Introduction to Functional Analysis,, The Clarendon Press, (1997). Google Scholar

[26]

H. Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen,, Manuscripta Math., 25 (1978), 135. doi: 10.1007/BF01168605. Google Scholar

[27]

E. Wolf, Weighted Fréchet spaces of holomorphic functions,, Stud. Math., 174 (2006), 255. doi: 10.4064/sm174-3-3. Google Scholar

show all references

References:
[1]

A. Albanese, J. Bonet and W. J. Ricker, Mean ergodic operators in Fréchet spaces,, Ann. Acad. Sci. Fenn. Math., 34 (2009), 401. Google Scholar

[2]

A. Albanese, J. Bonet and W. J. Ricker, On mean ergodic operators,, Oper. Theory Adv. Appl., 201 (2010), 1. Google Scholar

[3]

F. Bayart and E. Matheron, Dynamics of Linear Operators,, Cambridge Tracts in Mathematics 179, (2009). doi: 10.1017/CBO9780511581113. Google Scholar

[4]

M. J. Beltrán, Dynamics of differentiation and integration operators on weighted spaces of entire functions,, Studia Math., 221 (2014), 35. doi: 10.4064/sm221-1-3. Google Scholar

[5]

M. J. Beltrán, J. Bonet and C. Fernández, Classical operators on weighted Banach spaces of entire functions,, Proc. Amer. Math. Soc., 141 (2013), 4293. doi: 10.1090/S0002-9939-2013-11685-0. Google Scholar

[6]

C. Berenstein and R. Gay, Complex Analysis and Special Topics in Harmonic Analysis,, Springer, (1995). doi: 10.1007/978-1-4613-8445-8. Google Scholar

[7]

C. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable,, Adv. in Math., 33 (1979), 109. doi: 10.1016/S0001-8708(79)80002-X. Google Scholar

[8]

L. Bernal-González and A. Bonilla, Exponential type of hypercyclic entire functions,, Arch. Math. (Basel), 78 (2002), 283. doi: 10.1007/s00013-002-8248-7. Google Scholar

[9]

K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions,, Stud. Math., 127 (1998), 137. Google Scholar

[10]

K. D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits,, Trans. Am. Math. Soc., 272 (1982), 107. doi: 10.1090/S0002-9947-1982-0656483-9. Google Scholar

[11]

K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions,, J. Austral. Math. Soc. Ser. A, 54 (1993), 70. doi: 10.1017/S1446788700036983. Google Scholar

[12]

C. Blair and L. A. Rubel, A triply universal entire function,, Enseign. Math. (2), 30 (1984), 269. Google Scholar

[13]

J. Bonet, Hypercyclic and chaotic convolution operators,, J. London Math. Soc., 62 (2000), 253. doi: 10.1112/S0024610700001174. Google Scholar

[14]

J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions,, Math. Z., 261 (2009), 649. doi: 10.1007/s00209-008-0347-0. Google Scholar

[15]

J. Bonet and A. Bonilla, Chaos of the differentiation operator on weighted Banach spaces of entire functions,, Complex Anal. Oper. Theory, 7 (2013), 33. doi: 10.1007/s11785-011-0134-5. Google Scholar

[16]

R. Braun, Weighted algebras of entire functions in which each closed ideal admits two algebraic generators,, Michigan Math. J., 34 (1987), 441. doi: 10.1307/mmj/1029003623. Google Scholar

[17]

K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts,, Studia Math., 139 (2000), 47. Google Scholar

[18]

K. G. Grosse-Erdmann and A. Peris, Linear Chaos,, Springer, (2011). doi: 10.1007/978-1-4471-2170-1. Google Scholar

[19]

A. Harutyunyan and W. Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions,, Studia Math., 184 (2008), 233. doi: 10.4064/sm184-3-3. Google Scholar

[20]

W. Lusky, On the Fourier series of unbounded harmonic functions,, J. London Math. Soc., 61 (2000), 568. doi: 10.1112/S0024610799008443. Google Scholar

[21]

F. Martínez-Giménez and A. Peris, Chaos for backward shift operators,, Int. J. Bifurcation and Chaos, 12 (2002), 1703. doi: 10.1142/S0218127402005418. Google Scholar

[22]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229. doi: 10.1016/0022-1236(91)90078-J. Google Scholar

[23]

R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals,, J. Reine Angew. Math., 363 (1985), 59. doi: 10.1515/crll.1985.363.59. Google Scholar

[24]

R. Meise and B. A. Taylor, Sequence space representations for (FN)-algebras of entire functions modulo closed ideals,, Studia Math., 85 (1987), 203. Google Scholar

[25]

R. Meise and D. Vogt, Introduction to Functional Analysis,, The Clarendon Press, (1997). Google Scholar

[26]

H. Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen,, Manuscripta Math., 25 (1978), 135. doi: 10.1007/BF01168605. Google Scholar

[27]

E. Wolf, Weighted Fréchet spaces of holomorphic functions,, Stud. Math., 174 (2006), 255. doi: 10.4064/sm174-3-3. Google Scholar

[1]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[2]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[3]

J. Alberto Conejero, Marko Kostić, Pedro J. Miana, Marina Murillo-Arcila. Distributionally chaotic families of operators on Fréchet spaces. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1915-1939. doi: 10.3934/cpaa.2016022

[4]

Andrea Bonfiglioli, Ermanno Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1587-1614. doi: 10.3934/cpaa.2012.11.1587

[5]

Karim Boulabiar, Gerard Buskes and Gleb Sirotkin. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic Research Announcements, 2003, 9: 94-98.

[6]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[7]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[8]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[9]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[10]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[11]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[12]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[13]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[14]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[15]

Wenxian Shen, Xiaoxia Xie. Spectraltheory for nonlocal dispersal operators with time periodic indefinite weight functions and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1023-1047. doi: 10.3934/dcdsb.2017051

[16]

Bernd Ammann, Robert Lauter and Victor Nistor. Algebras of pseudodifferential operators on complete manifolds. Electronic Research Announcements, 2003, 9: 80-87.

[17]

Valerii Los, Vladimir A. Mikhailets, Aleksandr A. Murach. An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Communications on Pure & Applied Analysis, 2017, 16 (1) : 69-98. doi: 10.3934/cpaa.2017003

[18]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[19]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[20]

Ian D. Morris. Ergodic optimization for generic continuous functions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 383-388. doi: 10.3934/dcds.2010.27.383

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

[Back to Top]