February  2015, 35(2): 637-652. doi: 10.3934/dcds.2015.35.637

Classical operators on the Hörmander algebras

1. 

Facultad de Magisterio, Universitat de València, Avda. Tarongers, 4, E-46022-Valencia, Spain

2. 

Instituto Universitario de Matemática Pura y Aplicada, IUMPA Universitat Politència, Camino de Vera, s/n., E-46022 Valencia, Spain

3. 

Departamento de Análisis Matemático, Universitat de València, C/ Dr. Moliner, 50, E-46100-Burjassot, Spain

Received  July 2013 Revised  October 2013 Published  September 2014

We study the integration operator, the differentiation operator and more general differential operators on radial Fréchet or (LB) Hörmander algebras of entire functions. We analyze when these operators are power bounded, hypercyclic and (uniformly) mean ergodic.
Citation: María José Beltrán, José Bonet, Carmen Fernández. Classical operators on the Hörmander algebras. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 637-652. doi: 10.3934/dcds.2015.35.637
References:
[1]

A. Albanese, J. Bonet and W. J. Ricker, Mean ergodic operators in Fréchet spaces,, Ann. Acad. Sci. Fenn. Math., 34 (2009), 401.   Google Scholar

[2]

A. Albanese, J. Bonet and W. J. Ricker, On mean ergodic operators,, Oper. Theory Adv. Appl., 201 (2010), 1.   Google Scholar

[3]

F. Bayart and E. Matheron, Dynamics of Linear Operators,, Cambridge Tracts in Mathematics 179, (2009).  doi: 10.1017/CBO9780511581113.  Google Scholar

[4]

M. J. Beltrán, Dynamics of differentiation and integration operators on weighted spaces of entire functions,, Studia Math., 221 (2014), 35.  doi: 10.4064/sm221-1-3.  Google Scholar

[5]

M. J. Beltrán, J. Bonet and C. Fernández, Classical operators on weighted Banach spaces of entire functions,, Proc. Amer. Math. Soc., 141 (2013), 4293.  doi: 10.1090/S0002-9939-2013-11685-0.  Google Scholar

[6]

C. Berenstein and R. Gay, Complex Analysis and Special Topics in Harmonic Analysis,, Springer, (1995).  doi: 10.1007/978-1-4613-8445-8.  Google Scholar

[7]

C. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable,, Adv. in Math., 33 (1979), 109.  doi: 10.1016/S0001-8708(79)80002-X.  Google Scholar

[8]

L. Bernal-González and A. Bonilla, Exponential type of hypercyclic entire functions,, Arch. Math. (Basel), 78 (2002), 283.  doi: 10.1007/s00013-002-8248-7.  Google Scholar

[9]

K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions,, Stud. Math., 127 (1998), 137.   Google Scholar

[10]

K. D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits,, Trans. Am. Math. Soc., 272 (1982), 107.  doi: 10.1090/S0002-9947-1982-0656483-9.  Google Scholar

[11]

K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions,, J. Austral. Math. Soc. Ser. A, 54 (1993), 70.  doi: 10.1017/S1446788700036983.  Google Scholar

[12]

C. Blair and L. A. Rubel, A triply universal entire function,, Enseign. Math. (2), 30 (1984), 269.   Google Scholar

[13]

J. Bonet, Hypercyclic and chaotic convolution operators,, J. London Math. Soc., 62 (2000), 253.  doi: 10.1112/S0024610700001174.  Google Scholar

[14]

J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions,, Math. Z., 261 (2009), 649.  doi: 10.1007/s00209-008-0347-0.  Google Scholar

[15]

J. Bonet and A. Bonilla, Chaos of the differentiation operator on weighted Banach spaces of entire functions,, Complex Anal. Oper. Theory, 7 (2013), 33.  doi: 10.1007/s11785-011-0134-5.  Google Scholar

[16]

R. Braun, Weighted algebras of entire functions in which each closed ideal admits two algebraic generators,, Michigan Math. J., 34 (1987), 441.  doi: 10.1307/mmj/1029003623.  Google Scholar

[17]

K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts,, Studia Math., 139 (2000), 47.   Google Scholar

[18]

K. G. Grosse-Erdmann and A. Peris, Linear Chaos,, Springer, (2011).  doi: 10.1007/978-1-4471-2170-1.  Google Scholar

[19]

A. Harutyunyan and W. Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions,, Studia Math., 184 (2008), 233.  doi: 10.4064/sm184-3-3.  Google Scholar

[20]

W. Lusky, On the Fourier series of unbounded harmonic functions,, J. London Math. Soc., 61 (2000), 568.  doi: 10.1112/S0024610799008443.  Google Scholar

[21]

F. Martínez-Giménez and A. Peris, Chaos for backward shift operators,, Int. J. Bifurcation and Chaos, 12 (2002), 1703.  doi: 10.1142/S0218127402005418.  Google Scholar

[22]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229.  doi: 10.1016/0022-1236(91)90078-J.  Google Scholar

[23]

R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals,, J. Reine Angew. Math., 363 (1985), 59.  doi: 10.1515/crll.1985.363.59.  Google Scholar

[24]

R. Meise and B. A. Taylor, Sequence space representations for (FN)-algebras of entire functions modulo closed ideals,, Studia Math., 85 (1987), 203.   Google Scholar

[25]

R. Meise and D. Vogt, Introduction to Functional Analysis,, The Clarendon Press, (1997).   Google Scholar

[26]

H. Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen,, Manuscripta Math., 25 (1978), 135.  doi: 10.1007/BF01168605.  Google Scholar

[27]

E. Wolf, Weighted Fréchet spaces of holomorphic functions,, Stud. Math., 174 (2006), 255.  doi: 10.4064/sm174-3-3.  Google Scholar

show all references

References:
[1]

A. Albanese, J. Bonet and W. J. Ricker, Mean ergodic operators in Fréchet spaces,, Ann. Acad. Sci. Fenn. Math., 34 (2009), 401.   Google Scholar

[2]

A. Albanese, J. Bonet and W. J. Ricker, On mean ergodic operators,, Oper. Theory Adv. Appl., 201 (2010), 1.   Google Scholar

[3]

F. Bayart and E. Matheron, Dynamics of Linear Operators,, Cambridge Tracts in Mathematics 179, (2009).  doi: 10.1017/CBO9780511581113.  Google Scholar

[4]

M. J. Beltrán, Dynamics of differentiation and integration operators on weighted spaces of entire functions,, Studia Math., 221 (2014), 35.  doi: 10.4064/sm221-1-3.  Google Scholar

[5]

M. J. Beltrán, J. Bonet and C. Fernández, Classical operators on weighted Banach spaces of entire functions,, Proc. Amer. Math. Soc., 141 (2013), 4293.  doi: 10.1090/S0002-9939-2013-11685-0.  Google Scholar

[6]

C. Berenstein and R. Gay, Complex Analysis and Special Topics in Harmonic Analysis,, Springer, (1995).  doi: 10.1007/978-1-4613-8445-8.  Google Scholar

[7]

C. Berenstein and B. A. Taylor, A new look at interpolation theory for entire functions of one variable,, Adv. in Math., 33 (1979), 109.  doi: 10.1016/S0001-8708(79)80002-X.  Google Scholar

[8]

L. Bernal-González and A. Bonilla, Exponential type of hypercyclic entire functions,, Arch. Math. (Basel), 78 (2002), 283.  doi: 10.1007/s00013-002-8248-7.  Google Scholar

[9]

K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions,, Stud. Math., 127 (1998), 137.   Google Scholar

[10]

K. D. Bierstedt, R. Meise and W. H. Summers, A projective description of weighted inductive limits,, Trans. Am. Math. Soc., 272 (1982), 107.  doi: 10.1090/S0002-9947-1982-0656483-9.  Google Scholar

[11]

K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions,, J. Austral. Math. Soc. Ser. A, 54 (1993), 70.  doi: 10.1017/S1446788700036983.  Google Scholar

[12]

C. Blair and L. A. Rubel, A triply universal entire function,, Enseign. Math. (2), 30 (1984), 269.   Google Scholar

[13]

J. Bonet, Hypercyclic and chaotic convolution operators,, J. London Math. Soc., 62 (2000), 253.  doi: 10.1112/S0024610700001174.  Google Scholar

[14]

J. Bonet, Dynamics of the differentiation operator on weighted spaces of entire functions,, Math. Z., 261 (2009), 649.  doi: 10.1007/s00209-008-0347-0.  Google Scholar

[15]

J. Bonet and A. Bonilla, Chaos of the differentiation operator on weighted Banach spaces of entire functions,, Complex Anal. Oper. Theory, 7 (2013), 33.  doi: 10.1007/s11785-011-0134-5.  Google Scholar

[16]

R. Braun, Weighted algebras of entire functions in which each closed ideal admits two algebraic generators,, Michigan Math. J., 34 (1987), 441.  doi: 10.1307/mmj/1029003623.  Google Scholar

[17]

K. G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts,, Studia Math., 139 (2000), 47.   Google Scholar

[18]

K. G. Grosse-Erdmann and A. Peris, Linear Chaos,, Springer, (2011).  doi: 10.1007/978-1-4471-2170-1.  Google Scholar

[19]

A. Harutyunyan and W. Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions,, Studia Math., 184 (2008), 233.  doi: 10.4064/sm184-3-3.  Google Scholar

[20]

W. Lusky, On the Fourier series of unbounded harmonic functions,, J. London Math. Soc., 61 (2000), 568.  doi: 10.1112/S0024610799008443.  Google Scholar

[21]

F. Martínez-Giménez and A. Peris, Chaos for backward shift operators,, Int. J. Bifurcation and Chaos, 12 (2002), 1703.  doi: 10.1142/S0218127402005418.  Google Scholar

[22]

G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds,, J. Funct. Anal., 98 (1991), 229.  doi: 10.1016/0022-1236(91)90078-J.  Google Scholar

[23]

R. Meise, Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals,, J. Reine Angew. Math., 363 (1985), 59.  doi: 10.1515/crll.1985.363.59.  Google Scholar

[24]

R. Meise and B. A. Taylor, Sequence space representations for (FN)-algebras of entire functions modulo closed ideals,, Studia Math., 85 (1987), 203.   Google Scholar

[25]

R. Meise and D. Vogt, Introduction to Functional Analysis,, The Clarendon Press, (1997).   Google Scholar

[26]

H. Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen,, Manuscripta Math., 25 (1978), 135.  doi: 10.1007/BF01168605.  Google Scholar

[27]

E. Wolf, Weighted Fréchet spaces of holomorphic functions,, Stud. Math., 174 (2006), 255.  doi: 10.4064/sm174-3-3.  Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[9]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[10]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[20]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (7)

[Back to Top]